L(s) = 1 | + (−0.914 − 1.07i)2-s + (−0.5 − 0.866i)3-s + (−0.326 + 1.97i)4-s + (0.441 + 0.254i)5-s + (−0.476 + 1.33i)6-s + (2.42 − 1.45i)8-s + (−0.499 + 0.866i)9-s + (−0.129 − 0.709i)10-s + (−3.57 + 2.06i)11-s + (1.87 − 0.704i)12-s − 3.97i·13-s − 0.509i·15-s + (−3.78 − 1.28i)16-s + (−4.27 + 2.46i)17-s + (1.39 − 0.253i)18-s + (2.52 − 4.37i)19-s + ⋯ |
L(s) = 1 | + (−0.646 − 0.762i)2-s + (−0.288 − 0.499i)3-s + (−0.163 + 0.986i)4-s + (0.197 + 0.114i)5-s + (−0.194 + 0.543i)6-s + (0.857 − 0.513i)8-s + (−0.166 + 0.288i)9-s + (−0.0407 − 0.224i)10-s + (−1.07 + 0.622i)11-s + (0.540 − 0.203i)12-s − 1.10i·13-s − 0.131i·15-s + (−0.946 − 0.321i)16-s + (−1.03 + 0.598i)17-s + (0.327 − 0.0596i)18-s + (0.579 − 1.00i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.851 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0646023 + 0.227708i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0646023 + 0.227708i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.914 + 1.07i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.441 - 0.254i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.57 - 2.06i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.97iT - 13T^{2} \) |
| 17 | \( 1 + (4.27 - 2.46i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.52 + 4.37i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.52 + 1.45i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.82T + 29T^{2} \) |
| 31 | \( 1 + (2.85 + 4.95i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.00 - 8.66i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 11.7iT - 41T^{2} \) |
| 43 | \( 1 - 9.84iT - 43T^{2} \) |
| 47 | \( 1 + (3.93 - 6.81i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.619 + 1.07i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.32 - 4.03i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.470 - 0.271i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.08 + 3.51i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.06iT - 71T^{2} \) |
| 73 | \( 1 + (-0.724 + 0.418i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.08 - 0.629i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 13.7T + 83T^{2} \) |
| 89 | \( 1 + (4.06 + 2.34i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30634496077284084210443868063, −9.491496447295636358202188894390, −8.346923983274689922604518154811, −7.71659444513431513875099415648, −6.81222998101112010238985835326, −5.54704213328961141735157431892, −4.39268298074313755237981060312, −2.90016270288094856591261301018, −1.96618179434310591519374891387, −0.15971439876179841703056549506,
1.91747974212928850725934038036, 3.79041842536681565326065189392, 5.12277964627579646517640504453, 5.66856281723488659970217510430, 6.78997712596281359824218348469, 7.66049823879275165129578030743, 8.699066759917373778789618984234, 9.377558879364133442173130661480, 10.15295310415791482498194139517, 11.03482015266530471757804525203