L(s) = 1 | + (1.34 − 0.443i)2-s + (1.25 − 1.19i)3-s + (1.60 − 1.19i)4-s + (1.08 + 0.626i)5-s + (1.15 − 2.15i)6-s + (1.63 − 2.31i)8-s + (0.148 − 2.99i)9-s + (1.73 + 0.360i)10-s + (2.52 + 4.38i)11-s + (0.594 − 3.41i)12-s − 4.41·13-s + (2.11 − 0.509i)15-s + (1.16 − 3.82i)16-s + (−5.06 + 2.92i)17-s + (−1.12 − 4.08i)18-s + (1.32 + 0.765i)19-s + ⋯ |
L(s) = 1 | + (0.949 − 0.313i)2-s + (0.724 − 0.689i)3-s + (0.803 − 0.595i)4-s + (0.485 + 0.280i)5-s + (0.471 − 0.881i)6-s + (0.576 − 0.817i)8-s + (0.0494 − 0.998i)9-s + (0.548 + 0.114i)10-s + (0.762 + 1.32i)11-s + (0.171 − 0.985i)12-s − 1.22·13-s + (0.544 − 0.131i)15-s + (0.291 − 0.956i)16-s + (−1.22 + 0.709i)17-s + (−0.266 − 0.963i)18-s + (0.304 + 0.175i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.523 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.523 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.96080 - 1.65689i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.96080 - 1.65689i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 + 0.443i)T \) |
| 3 | \( 1 + (-1.25 + 1.19i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.08 - 0.626i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.52 - 4.38i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.41T + 13T^{2} \) |
| 17 | \( 1 + (5.06 - 2.92i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.32 - 0.765i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.156 + 0.271i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.53iT - 29T^{2} \) |
| 31 | \( 1 + (4.24 - 2.44i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.66 + 4.62i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.97iT - 41T^{2} \) |
| 43 | \( 1 - 3.18iT - 43T^{2} \) |
| 47 | \( 1 + (-5.74 + 9.95i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (11.0 - 6.39i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.98 - 6.89i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.151 - 0.262i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.13 + 5.27i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.53T + 71T^{2} \) |
| 73 | \( 1 + (-0.707 - 1.22i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6 + 3.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.78T + 83T^{2} \) |
| 89 | \( 1 + (4.15 + 2.39i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56152344070184405632091773724, −9.743075591320994229362450917187, −8.971782983717432139679204441126, −7.46805147260200555113301112909, −6.93816656251355263606906144388, −6.11131668146201304213173345030, −4.77964427000816139212229580345, −3.80001068434317190801279043124, −2.44147398428270346328305133570, −1.78415682012435393407604323615,
2.19675553109084682265939121049, 3.20840512114471264820710029670, 4.30001779050805400553538854268, 5.13071170481104892577859429816, 6.09717589184676968161537360376, 7.21658685532637840230536431915, 8.165742286806709238410601543770, 9.131470177830242631299506028302, 9.775835390423300595891409040685, 11.13878792692581192551731104733