L(s) = 1 | + (1.01 + 0.988i)2-s + (−0.683 − 1.59i)3-s + (0.0474 + 1.99i)4-s + (−1.97 − 1.13i)5-s + (0.880 − 2.28i)6-s + (−1.92 + 2.06i)8-s + (−2.06 + 2.17i)9-s + (−0.870 − 3.10i)10-s + (−2.15 − 3.73i)11-s + (3.14 − 1.44i)12-s + 0.406·13-s + (−0.463 + 3.91i)15-s + (−3.99 + 0.189i)16-s + (−3.73 + 2.15i)17-s + (−4.23 + 0.162i)18-s + (−4.70 − 2.71i)19-s + ⋯ |
L(s) = 1 | + (0.715 + 0.698i)2-s + (−0.394 − 0.918i)3-s + (0.0237 + 0.999i)4-s + (−0.882 − 0.509i)5-s + (0.359 − 0.933i)6-s + (−0.681 + 0.731i)8-s + (−0.688 + 0.725i)9-s + (−0.275 − 0.980i)10-s + (−0.651 − 1.12i)11-s + (0.909 − 0.416i)12-s + 0.112·13-s + (−0.119 + 1.01i)15-s + (−0.998 + 0.0474i)16-s + (−0.907 + 0.523i)17-s + (−0.999 + 0.0382i)18-s + (−1.07 − 0.622i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.775 + 0.631i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.775 + 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.124421 - 0.349989i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.124421 - 0.349989i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.01 - 0.988i)T \) |
| 3 | \( 1 + (0.683 + 1.59i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.97 + 1.13i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.15 + 3.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.406T + 13T^{2} \) |
| 17 | \( 1 + (3.73 - 2.15i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.70 + 2.71i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.581 - 1.00i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.72iT - 29T^{2} \) |
| 31 | \( 1 + (5.05 - 2.91i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.91 + 6.78i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.56iT - 41T^{2} \) |
| 43 | \( 1 - 11.0iT - 43T^{2} \) |
| 47 | \( 1 + (-1.16 + 2.01i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.74 - 2.74i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.95 - 3.38i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.22 + 9.04i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.78 + 3.91i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.88T + 71T^{2} \) |
| 73 | \( 1 + (-1.40 - 2.43i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.46 - 2i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.641T + 83T^{2} \) |
| 89 | \( 1 + (-12.1 - 6.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99136034932757104345033297996, −8.926543618309772526152445611516, −8.245344452396893026838007788635, −7.69478384383790179833554113740, −6.60682098539544630800613458482, −5.89400822840324746413653123673, −4.86976279338651441999985024078, −3.84166874106588999702073471621, −2.44363501426904513533650991322, −0.16062118560939502071029930788,
2.33965768821184562664155945161, 3.58576585931371197522615593302, 4.35521269609977747768750744803, 5.14370250809815133078173424798, 6.31993729782137578001341096346, 7.27213663034111815808473315756, 8.640389797454423515050417912929, 9.681942149395589212686110789870, 10.42664198199682420924475798945, 11.04160151263024778174096182498