Properties

Label 2-588-12.11-c1-0-1
Degree $2$
Conductor $588$
Sign $-0.939 - 0.343i$
Analytic cond. $4.69520$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.05 + 0.941i)2-s + (0.406 − 1.68i)3-s + (0.227 − 1.98i)4-s + 1.25i·5-s + (1.15 + 2.15i)6-s + (1.63 + 2.31i)8-s + (−2.66 − 1.36i)9-s + (−1.18 − 1.32i)10-s − 5.05·11-s + (−3.25 − 1.19i)12-s − 4.41·13-s + (2.11 + 0.509i)15-s + (−3.89 − 0.903i)16-s + 5.85i·17-s + (4.10 − 1.06i)18-s + 1.53i·19-s + ⋯
L(s)  = 1  + (−0.746 + 0.665i)2-s + (0.234 − 0.972i)3-s + (0.113 − 0.993i)4-s + 0.560i·5-s + (0.471 + 0.881i)6-s + (0.576 + 0.817i)8-s + (−0.889 − 0.456i)9-s + (−0.373 − 0.418i)10-s − 1.52·11-s + (−0.939 − 0.343i)12-s − 1.22·13-s + (0.544 + 0.131i)15-s + (−0.974 − 0.225i)16-s + 1.41i·17-s + (0.967 − 0.251i)18-s + 0.351i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.343i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-0.939 - 0.343i$
Analytic conductor: \(4.69520\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :1/2),\ -0.939 - 0.343i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0322446 + 0.181821i\)
\(L(\frac12)\) \(\approx\) \(0.0322446 + 0.181821i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.05 - 0.941i)T \)
3 \( 1 + (-0.406 + 1.68i)T \)
7 \( 1 \)
good5 \( 1 - 1.25iT - 5T^{2} \)
11 \( 1 + 5.05T + 11T^{2} \)
13 \( 1 + 4.41T + 13T^{2} \)
17 \( 1 - 5.85iT - 17T^{2} \)
19 \( 1 - 1.53iT - 19T^{2} \)
23 \( 1 + 0.313T + 23T^{2} \)
29 \( 1 + 5.53iT - 29T^{2} \)
31 \( 1 - 4.89iT - 31T^{2} \)
37 \( 1 + 5.33T + 37T^{2} \)
41 \( 1 - 1.97iT - 41T^{2} \)
43 \( 1 + 3.18iT - 43T^{2} \)
47 \( 1 + 11.4T + 47T^{2} \)
53 \( 1 - 12.7iT - 53T^{2} \)
59 \( 1 + 7.96T + 59T^{2} \)
61 \( 1 - 0.302T + 61T^{2} \)
67 \( 1 + 10.5iT - 67T^{2} \)
71 \( 1 + 4.53T + 71T^{2} \)
73 \( 1 + 1.41T + 73T^{2} \)
79 \( 1 + 6.92iT - 79T^{2} \)
83 \( 1 - 6.78T + 83T^{2} \)
89 \( 1 + 4.79iT - 89T^{2} \)
97 \( 1 - 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68351726344440954370470417248, −10.31140989328271138067020928923, −9.134342430466663219753572950727, −8.077698878137819007588768022055, −7.70252268450444425783675774372, −6.78135632846476561530087147746, −5.96537528866989554685834087554, −4.95087669940009900781986854829, −2.92961821103792099572293451406, −1.85839422683853946582370608237, 0.11764724732277384546290057256, 2.40021801291102206320868841114, 3.20001497814350330078453432534, 4.74891302693279132437093507224, 5.14881587333502426241614568580, 7.10185455254992958305243486482, 7.953066728585775948073284828029, 8.775113362591366130551141725844, 9.595966173996138610597978980763, 10.12716051516158307369257702654

Graph of the $Z$-function along the critical line