L(s) = 1 | + (−1.05 + 0.941i)2-s + (0.406 − 1.68i)3-s + (0.227 − 1.98i)4-s + 1.25i·5-s + (1.15 + 2.15i)6-s + (1.63 + 2.31i)8-s + (−2.66 − 1.36i)9-s + (−1.18 − 1.32i)10-s − 5.05·11-s + (−3.25 − 1.19i)12-s − 4.41·13-s + (2.11 + 0.509i)15-s + (−3.89 − 0.903i)16-s + 5.85i·17-s + (4.10 − 1.06i)18-s + 1.53i·19-s + ⋯ |
L(s) = 1 | + (−0.746 + 0.665i)2-s + (0.234 − 0.972i)3-s + (0.113 − 0.993i)4-s + 0.560i·5-s + (0.471 + 0.881i)6-s + (0.576 + 0.817i)8-s + (−0.889 − 0.456i)9-s + (−0.373 − 0.418i)10-s − 1.52·11-s + (−0.939 − 0.343i)12-s − 1.22·13-s + (0.544 + 0.131i)15-s + (−0.974 − 0.225i)16-s + 1.41i·17-s + (0.967 − 0.251i)18-s + 0.351i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.343i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0322446 + 0.181821i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0322446 + 0.181821i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.05 - 0.941i)T \) |
| 3 | \( 1 + (-0.406 + 1.68i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.25iT - 5T^{2} \) |
| 11 | \( 1 + 5.05T + 11T^{2} \) |
| 13 | \( 1 + 4.41T + 13T^{2} \) |
| 17 | \( 1 - 5.85iT - 17T^{2} \) |
| 19 | \( 1 - 1.53iT - 19T^{2} \) |
| 23 | \( 1 + 0.313T + 23T^{2} \) |
| 29 | \( 1 + 5.53iT - 29T^{2} \) |
| 31 | \( 1 - 4.89iT - 31T^{2} \) |
| 37 | \( 1 + 5.33T + 37T^{2} \) |
| 41 | \( 1 - 1.97iT - 41T^{2} \) |
| 43 | \( 1 + 3.18iT - 43T^{2} \) |
| 47 | \( 1 + 11.4T + 47T^{2} \) |
| 53 | \( 1 - 12.7iT - 53T^{2} \) |
| 59 | \( 1 + 7.96T + 59T^{2} \) |
| 61 | \( 1 - 0.302T + 61T^{2} \) |
| 67 | \( 1 + 10.5iT - 67T^{2} \) |
| 71 | \( 1 + 4.53T + 71T^{2} \) |
| 73 | \( 1 + 1.41T + 73T^{2} \) |
| 79 | \( 1 + 6.92iT - 79T^{2} \) |
| 83 | \( 1 - 6.78T + 83T^{2} \) |
| 89 | \( 1 + 4.79iT - 89T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68351726344440954370470417248, −10.31140989328271138067020928923, −9.134342430466663219753572950727, −8.077698878137819007588768022055, −7.70252268450444425783675774372, −6.78135632846476561530087147746, −5.96537528866989554685834087554, −4.95087669940009900781986854829, −2.92961821103792099572293451406, −1.85839422683853946582370608237,
0.11764724732277384546290057256, 2.40021801291102206320868841114, 3.20001497814350330078453432534, 4.74891302693279132437093507224, 5.14881587333502426241614568580, 7.10185455254992958305243486482, 7.953066728585775948073284828029, 8.775113362591366130551141725844, 9.595966173996138610597978980763, 10.12716051516158307369257702654