L(s) = 1 | + (0.866 + 1.11i)2-s + (1.58 − 0.707i)3-s + (−0.500 + 1.93i)4-s + 2.44i·5-s + (2.15 + 1.15i)6-s + (−2.59 + 1.11i)8-s + (2.00 − 2.23i)9-s + (−2.73 + 2.12i)10-s − 3.46·11-s + (0.578 + 3.41i)12-s + 5.47·13-s + (1.73 + 3.87i)15-s + (−3.5 − 1.93i)16-s + 4.89i·17-s + (4.23 + 0.299i)18-s + 4.24i·19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.790i)2-s + (0.912 − 0.408i)3-s + (−0.250 + 0.968i)4-s + 1.09i·5-s + (0.881 + 0.471i)6-s + (−0.918 + 0.395i)8-s + (0.666 − 0.745i)9-s + (−0.866 + 0.670i)10-s − 1.04·11-s + (0.167 + 0.985i)12-s + 1.51·13-s + (0.447 + 0.999i)15-s + (−0.875 − 0.484i)16-s + 1.18i·17-s + (0.997 + 0.0706i)18-s + 0.973i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64343 + 1.94533i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64343 + 1.94533i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 1.11i)T \) |
| 3 | \( 1 + (-1.58 + 0.707i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.44iT - 5T^{2} \) |
| 11 | \( 1 + 3.46T + 11T^{2} \) |
| 13 | \( 1 - 5.47T + 13T^{2} \) |
| 17 | \( 1 - 4.89iT - 17T^{2} \) |
| 19 | \( 1 - 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 4.47iT - 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 7.74iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 4.47iT - 53T^{2} \) |
| 59 | \( 1 - 9.48T + 59T^{2} \) |
| 61 | \( 1 + 5.47T + 61T^{2} \) |
| 67 | \( 1 - 7.74iT - 67T^{2} \) |
| 71 | \( 1 + 3.46T + 71T^{2} \) |
| 73 | \( 1 - 10.9T + 73T^{2} \) |
| 79 | \( 1 + 15.4iT - 79T^{2} \) |
| 83 | \( 1 - 9.48T + 83T^{2} \) |
| 89 | \( 1 + 9.79iT - 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89698667431357007637453399295, −10.06609333626109019824795417476, −8.759693672222205916176832641483, −8.069441200465467101735866936943, −7.44125819607794697603139724143, −6.37700479042904094690756629941, −5.82144924215542053459077455220, −4.04461368226580306873781377094, −3.38951714953585904657040784067, −2.24682076821343114350555193694,
1.20357262065163400285475578150, 2.66859900605976416864466954447, 3.61275881453714898501354785219, 4.85191607807871687290837366494, 5.20877664513282737465349587097, 6.79154545634358279785240810705, 8.200280164027261268624317960389, 8.895209810318371171849152710460, 9.500484113621841943629521758088, 10.58352606087912046590881495087