L(s) = 1 | + (−0.975 + 1.43i)3-s + (−2.23 − 1.41i)7-s + (−1.09 − 2.79i)9-s + (5.35 − 4.27i)13-s + (−3.99 − 2.30i)19-s + (4.20 − 1.81i)21-s + (4.94 + 0.745i)25-s + (5.06 + 1.15i)27-s + (9.62 − 5.55i)31-s + (−2.50 − 0.771i)37-s + (0.886 + 11.8i)39-s + (−6.08 − 2.92i)43-s + (2.99 + 6.32i)49-s + (7.20 − 3.47i)57-s + (4.47 − 14.5i)61-s + ⋯ |
L(s) = 1 | + (−0.563 + 0.826i)3-s + (−0.845 − 0.534i)7-s + (−0.365 − 0.930i)9-s + (1.48 − 1.18i)13-s + (−0.917 − 0.529i)19-s + (0.917 − 0.397i)21-s + (0.988 + 0.149i)25-s + (0.974 + 0.222i)27-s + (1.72 − 0.997i)31-s + (−0.411 − 0.126i)37-s + (0.141 + 1.89i)39-s + (−0.927 − 0.446i)43-s + (0.428 + 0.903i)49-s + (0.954 − 0.459i)57-s + (0.573 − 1.85i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.917355 - 0.335288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.917355 - 0.335288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.975 - 1.43i)T \) |
| 7 | \( 1 + (2.23 + 1.41i)T \) |
good | 5 | \( 1 + (-4.94 - 0.745i)T^{2} \) |
| 11 | \( 1 + (8.06 + 7.48i)T^{2} \) |
| 13 | \( 1 + (-5.35 + 4.27i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (1.27 - 16.9i)T^{2} \) |
| 19 | \( 1 + (3.99 + 2.30i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.71 - 22.9i)T^{2} \) |
| 29 | \( 1 + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 + (-9.62 + 5.55i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.50 + 0.771i)T + (30.5 + 20.8i)T^{2} \) |
| 41 | \( 1 + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (6.08 + 2.92i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (44.9 - 13.8i)T^{2} \) |
| 53 | \( 1 + (-43.7 + 29.8i)T^{2} \) |
| 59 | \( 1 + (-58.3 + 8.79i)T^{2} \) |
| 61 | \( 1 + (-4.47 + 14.5i)T + (-50.4 - 34.3i)T^{2} \) |
| 67 | \( 1 + (1.12 + 1.95i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-2.52 + 16.7i)T + (-69.7 - 21.5i)T^{2} \) |
| 79 | \( 1 + (0.641 - 1.11i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (-65.2 + 60.5i)T^{2} \) |
| 97 | \( 1 + 2.30iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61366826403066815585751928508, −9.932957346866608414380360932502, −8.955031174140909381064975675956, −8.116194243512140495989151512260, −6.64300618555924102410001355534, −6.13327923059855243970435238088, −4.98404834871201979531900243763, −3.89499161468844992989346798216, −3.05862249007377743979105855422, −0.64860535172667476546892407768,
1.39888155373144070234945186153, 2.79794804723528566991133051525, 4.20907113441499542432788947861, 5.52787425518504365605582607129, 6.54380162270201223330027571628, 6.73019768363958595702674507831, 8.342453256807889173922589451388, 8.764429741705238021715700920327, 10.05464617262768787268203291106, 10.89898766714367124050227695653