L(s) = 1 | + (1.61 − 0.632i)3-s + (1.40 − 2.24i)7-s + (2.19 − 2.04i)9-s + (−0.652 − 0.148i)13-s + (0.824 − 0.476i)19-s + (0.837 − 4.50i)21-s + (−4.77 − 1.47i)25-s + (2.25 − 4.68i)27-s + (5.48 + 3.16i)31-s + (6.32 + 4.31i)37-s + (−1.14 + 0.172i)39-s + (−0.750 − 0.941i)43-s + (−3.07 − 6.28i)49-s + (1.02 − 1.28i)57-s + (−6.93 + 10.1i)61-s + ⋯ |
L(s) = 1 | + (0.930 − 0.365i)3-s + (0.529 − 0.848i)7-s + (0.733 − 0.680i)9-s + (−0.181 − 0.0413i)13-s + (0.189 − 0.109i)19-s + (0.182 − 0.983i)21-s + (−0.955 − 0.294i)25-s + (0.433 − 0.900i)27-s + (0.985 + 0.568i)31-s + (1.03 + 0.709i)37-s + (−0.183 + 0.0276i)39-s + (−0.114 − 0.143i)43-s + (−0.439 − 0.898i)49-s + (0.136 − 0.170i)57-s + (−0.888 + 1.30i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.652 + 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.652 + 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.90581 - 0.873227i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.90581 - 0.873227i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.61 + 0.632i)T \) |
| 7 | \( 1 + (-1.40 + 2.24i)T \) |
good | 5 | \( 1 + (4.77 + 1.47i)T^{2} \) |
| 11 | \( 1 + (-0.822 - 10.9i)T^{2} \) |
| 13 | \( 1 + (0.652 + 0.148i)T + (11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + (-16.8 - 2.53i)T^{2} \) |
| 19 | \( 1 + (-0.824 + 0.476i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (22.7 - 3.42i)T^{2} \) |
| 29 | \( 1 + (-18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 + (-5.48 - 3.16i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.32 - 4.31i)T + (13.5 + 34.4i)T^{2} \) |
| 41 | \( 1 + (-9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (0.750 + 0.941i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (38.8 - 26.4i)T^{2} \) |
| 53 | \( 1 + (-19.3 + 49.3i)T^{2} \) |
| 59 | \( 1 + (56.3 - 17.3i)T^{2} \) |
| 61 | \( 1 + (6.93 - 10.1i)T + (-22.2 - 56.7i)T^{2} \) |
| 67 | \( 1 + (7.65 - 13.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (-2.63 + 8.53i)T + (-60.3 - 41.1i)T^{2} \) |
| 79 | \( 1 + (-6.53 - 11.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (6.65 - 88.7i)T^{2} \) |
| 97 | \( 1 + 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37613710293156968067178133930, −9.732332356690334863525832299113, −8.672717738725355972764029066008, −7.894565364663595169919145239929, −7.23477879407098144430694697227, −6.23055564353373942966973598192, −4.74190470363946769478789136139, −3.83623671378397927736199661320, −2.61481452692486861748329339723, −1.23429580222491473633445683700,
1.87877513215208232386808074232, 2.91891955372534257262192106204, 4.15999013413012349864742265271, 5.12680453287217691704730944046, 6.23234922192056068658197488440, 7.62946239199404176325045994703, 8.138116312353866108529457290725, 9.160821401945210087571929849870, 9.680295462687304973109013912747, 10.74690869709191240343256284970