L(s) = 1 | + (1.34 − 0.424i)2-s − 3-s + (1.63 − 1.14i)4-s + 0.127i·5-s + (−1.34 + 0.424i)6-s + (1.72 − 2.24i)8-s + 9-s + (0.0542 + 0.172i)10-s − 3.99i·11-s + (−1.63 + 1.14i)12-s + 0.891i·13-s − 0.127i·15-s + (1.37 − 3.75i)16-s − 5.82i·17-s + (1.34 − 0.424i)18-s + 6.31·19-s + ⋯ |
L(s) = 1 | + (0.953 − 0.300i)2-s − 0.577·3-s + (0.819 − 0.572i)4-s + 0.0572i·5-s + (−0.550 + 0.173i)6-s + (0.610 − 0.792i)8-s + 0.333·9-s + (0.0171 + 0.0545i)10-s − 1.20i·11-s + (−0.473 + 0.330i)12-s + 0.247i·13-s − 0.0330i·15-s + (0.344 − 0.938i)16-s − 1.41i·17-s + (0.317 − 0.100i)18-s + 1.44·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.437 + 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.437 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89565 - 1.18630i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89565 - 1.18630i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 + 0.424i)T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 0.127iT - 5T^{2} \) |
| 11 | \( 1 + 3.99iT - 11T^{2} \) |
| 13 | \( 1 - 0.891iT - 13T^{2} \) |
| 17 | \( 1 + 5.82iT - 17T^{2} \) |
| 19 | \( 1 - 6.31T + 19T^{2} \) |
| 23 | \( 1 - 6.60iT - 23T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + 8.45T + 31T^{2} \) |
| 37 | \( 1 + 8.67T + 37T^{2} \) |
| 41 | \( 1 + 3.24iT - 41T^{2} \) |
| 43 | \( 1 - 0.881iT - 43T^{2} \) |
| 47 | \( 1 - 10.0T + 47T^{2} \) |
| 53 | \( 1 + 7.53T + 53T^{2} \) |
| 59 | \( 1 - 0.588T + 59T^{2} \) |
| 61 | \( 1 - 1.68iT - 61T^{2} \) |
| 67 | \( 1 - 6.35iT - 67T^{2} \) |
| 71 | \( 1 - 11.3iT - 71T^{2} \) |
| 73 | \( 1 - 15.5iT - 73T^{2} \) |
| 79 | \( 1 - 9.82iT - 79T^{2} \) |
| 83 | \( 1 - 1.48T + 83T^{2} \) |
| 89 | \( 1 + 0.449iT - 89T^{2} \) |
| 97 | \( 1 - 16.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93873301607769492034881992451, −9.880049718526949717592178807210, −8.992344592908123181145719257817, −7.44172880460132907166278823251, −6.84831202103265455484578563324, −5.51791981105317144091003086524, −5.26382178844884527722893075015, −3.79577032082493720470850719437, −2.87716514962878024219291212169, −1.11574592182140202984748143234,
1.81073648823693383640880583128, 3.32452999634377592438213705804, 4.49662852296892914806397512756, 5.22455029589869457925645359582, 6.23897785105097254134281460693, 7.06107362815001621156741477334, 7.86504475381526171153961177908, 9.053134654149095156828257408863, 10.39335510167014183895701379354, 10.81371879084577325971345531170