L(s) = 1 | + (−0.988 − 1.01i)2-s − 3-s + (−0.0442 + 1.99i)4-s − 1.12i·5-s + (0.988 + 1.01i)6-s + (2.06 − 1.93i)8-s + 9-s + (−1.14 + 1.11i)10-s + 1.35i·11-s + (0.0442 − 1.99i)12-s + 5.58i·13-s + 1.12i·15-s + (−3.99 − 0.177i)16-s − 3.97i·17-s + (−0.988 − 1.01i)18-s − 6.14·19-s + ⋯ |
L(s) = 1 | + (−0.699 − 0.714i)2-s − 0.577·3-s + (−0.0221 + 0.999i)4-s − 0.504i·5-s + (0.403 + 0.412i)6-s + (0.730 − 0.683i)8-s + 0.333·9-s + (−0.360 + 0.353i)10-s + 0.407i·11-s + (0.0127 − 0.577i)12-s + 1.54i·13-s + 0.291i·15-s + (−0.999 − 0.0442i)16-s − 0.963i·17-s + (−0.233 − 0.238i)18-s − 1.40·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.134i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.743812 + 0.0503048i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.743812 + 0.0503048i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.988 + 1.01i)T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.12iT - 5T^{2} \) |
| 11 | \( 1 - 1.35iT - 11T^{2} \) |
| 13 | \( 1 - 5.58iT - 13T^{2} \) |
| 17 | \( 1 + 3.97iT - 17T^{2} \) |
| 19 | \( 1 + 6.14T + 19T^{2} \) |
| 23 | \( 1 - 6.61iT - 23T^{2} \) |
| 29 | \( 1 - 8.55T + 29T^{2} \) |
| 31 | \( 1 - 2.92T + 31T^{2} \) |
| 37 | \( 1 - 6.32T + 37T^{2} \) |
| 41 | \( 1 - 0.149iT - 41T^{2} \) |
| 43 | \( 1 - 10.6iT - 43T^{2} \) |
| 47 | \( 1 - 3.59T + 47T^{2} \) |
| 53 | \( 1 - 0.733T + 53T^{2} \) |
| 59 | \( 1 - 14.4T + 59T^{2} \) |
| 61 | \( 1 - 9.11iT - 61T^{2} \) |
| 67 | \( 1 + 0.234iT - 67T^{2} \) |
| 71 | \( 1 + 8.74iT - 71T^{2} \) |
| 73 | \( 1 - 1.76iT - 73T^{2} \) |
| 79 | \( 1 + 8.40iT - 79T^{2} \) |
| 83 | \( 1 + 9.12T + 83T^{2} \) |
| 89 | \( 1 - 7.92iT - 89T^{2} \) |
| 97 | \( 1 - 6.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75674242280221109372588391353, −9.785580858342947089286143332431, −9.172363399679461104391081246689, −8.297168622527189096830848004448, −7.17500659250840484223474665474, −6.42174107773697990840552001550, −4.80773593413775398928617465942, −4.17839325734977092385002703379, −2.52784460108444503538390616772, −1.19547476755475920160614407091,
0.67402527198949072103493791312, 2.57014348431682482815117370003, 4.31093667440588856669491897680, 5.47677130755153509099044409923, 6.30626715552299942976240741641, 6.91710887562439147423427824743, 8.263236944571290111212622451415, 8.516973620035802913646800542662, 10.11756613296232880561050015855, 10.48482179237241919464114020579