Properties

Label 4-588e2-1.1-c0e2-0-0
Degree $4$
Conductor $345744$
Sign $1$
Analytic cond. $0.0861130$
Root an. cond. $0.541710$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·13-s − 19-s − 25-s − 27-s − 31-s + 37-s + 2·39-s − 2·43-s − 57-s + 2·61-s + 67-s − 73-s − 75-s + 79-s − 81-s − 93-s − 4·97-s − 103-s + 109-s + 111-s − 121-s + 127-s − 2·129-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 3-s + 2·13-s − 19-s − 25-s − 27-s − 31-s + 37-s + 2·39-s − 2·43-s − 57-s + 2·61-s + 67-s − 73-s − 75-s + 79-s − 81-s − 93-s − 4·97-s − 103-s + 109-s + 111-s − 121-s + 127-s − 2·129-s + 131-s + 137-s + 139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345744\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.0861130\)
Root analytic conductor: \(0.541710\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345744,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.107688232\)
\(L(\frac12)\) \(\approx\) \(1.107688232\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
good5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$ \( ( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96664958049183023270048931401, −10.88614218557306661600797609083, −10.13663339387518722274320505706, −9.754835440362029041881672962531, −9.334258234405525076489462619641, −8.816263112096803931522599085736, −8.431297864040461709348895744382, −8.233278486413240224214762073617, −7.81183857045515260677118259474, −7.15992582868078404847623386712, −6.46029390944863672063136976744, −6.38159846360287234458692031407, −5.48119958529953798572455739245, −5.40309970220705646956852590940, −4.25375385406327933710441393164, −3.93255342343252861154852138051, −3.52350657733996887860440063389, −2.84850640503453405746967262457, −2.12038407169083188352969656730, −1.47570677446529143342630202656, 1.47570677446529143342630202656, 2.12038407169083188352969656730, 2.84850640503453405746967262457, 3.52350657733996887860440063389, 3.93255342343252861154852138051, 4.25375385406327933710441393164, 5.40309970220705646956852590940, 5.48119958529953798572455739245, 6.38159846360287234458692031407, 6.46029390944863672063136976744, 7.15992582868078404847623386712, 7.81183857045515260677118259474, 8.233278486413240224214762073617, 8.431297864040461709348895744382, 8.816263112096803931522599085736, 9.334258234405525076489462619641, 9.754835440362029041881672962531, 10.13663339387518722274320505706, 10.88614218557306661600797609083, 10.96664958049183023270048931401

Graph of the $Z$-function along the critical line