| L(s) = 1 | + 5.38i·2-s − 20.9·4-s + (−0.249 − 11.1i)5-s − 12.4i·7-s − 69.7i·8-s + (60.1 − 1.34i)10-s − 56.6·11-s − 13i·13-s + 67.0·14-s + 207.·16-s − 11.4i·17-s + 98.6·19-s + (5.22 + 234. i)20-s − 304. i·22-s + 138. i·23-s + ⋯ |
| L(s) = 1 | + 1.90i·2-s − 2.62·4-s + (−0.0222 − 0.999i)5-s − 0.672i·7-s − 3.08i·8-s + (1.90 − 0.0424i)10-s − 1.55·11-s − 0.277i·13-s + 1.27·14-s + 3.24·16-s − 0.164i·17-s + 1.19·19-s + (0.0584 + 2.62i)20-s − 2.95i·22-s + 1.25i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0222i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0222i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.7878521053\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7878521053\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.249 + 11.1i)T \) |
| 13 | \( 1 + 13iT \) |
| good | 2 | \( 1 - 5.38iT - 8T^{2} \) |
| 7 | \( 1 + 12.4iT - 343T^{2} \) |
| 11 | \( 1 + 56.6T + 1.33e3T^{2} \) |
| 17 | \( 1 + 11.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 98.6T + 6.85e3T^{2} \) |
| 23 | \( 1 - 138. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 145.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 173.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 387. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 243.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 158. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 76.1iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 290. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 284.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 253.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 743. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 839.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 590. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.34e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 86.9iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.20e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 321. iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23141628339539724588725625262, −9.594758233992431570027641212916, −8.640332793684403515105779605666, −7.69577532685998374912437115151, −7.54616774749412862390320506233, −6.16244576928739458735870051247, −5.20711771789789393449352208582, −4.83206844389606025774472723483, −3.50153542383056066541078330249, −0.924173094736122493935496930717,
0.30497514264879959765901464522, 2.10493121988456729862432579835, 2.71804303582553752183646456957, 3.63905043821344447989526909898, 4.90846814659451686240922214026, 5.80835591253797114005826376904, 7.43687617855829462937759867383, 8.424472578280448320873924210594, 9.348874289581486856875274833123, 10.26506269766856150771233253096