L(s) = 1 | + 5.17i·2-s − 18.8·4-s + (−8.43 − 7.33i)5-s + 32.8i·7-s − 56.0i·8-s + (37.9 − 43.6i)10-s − 41.5·11-s + 13i·13-s − 170.·14-s + 139.·16-s − 49.8i·17-s − 121.·19-s + (158. + 137. i)20-s − 214. i·22-s − 136. i·23-s + ⋯ |
L(s) = 1 | + 1.83i·2-s − 2.35·4-s + (−0.754 − 0.655i)5-s + 1.77i·7-s − 2.47i·8-s + (1.20 − 1.38i)10-s − 1.13·11-s + 0.277i·13-s − 3.24·14-s + 2.17·16-s − 0.711i·17-s − 1.46·19-s + (1.77 + 1.54i)20-s − 2.08i·22-s − 1.24i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.655 - 0.754i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.655 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4653472352\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4653472352\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (8.43 + 7.33i)T \) |
| 13 | \( 1 - 13iT \) |
good | 2 | \( 1 - 5.17iT - 8T^{2} \) |
| 7 | \( 1 - 32.8iT - 343T^{2} \) |
| 11 | \( 1 + 41.5T + 1.33e3T^{2} \) |
| 17 | \( 1 + 49.8iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 121.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 136. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 126.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 119.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 79.5iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 145.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 125. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 556. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 217. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 47.1T + 2.05e5T^{2} \) |
| 61 | \( 1 - 846.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 285. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 275.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 149. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 302.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 614. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.12e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.82e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00622777351235823240787436425, −8.846146354138405380655691399648, −8.556965881003661318220880982216, −7.898288504884487049196602320243, −6.74924161907895523263978389432, −5.90679477493609575637179289970, −5.02552765360141342866345543679, −4.45458284298051955748104200376, −2.63869089705955300514975969030, −0.20477922078538556294219663699,
0.77603166031079432564295655967, 2.23796874191311466084793716099, 3.46082175050699725644417665275, 3.98434359342907226275473154040, 4.95474685900843086710072504625, 6.70961943331386296995154602931, 7.82846499493363954140176761076, 8.450835059962146231385079120037, 10.05278400686189476853863934054, 10.32023522637444577057201604637