Properties

Label 2-585-5.4-c1-0-28
Degree $2$
Conductor $585$
Sign $-0.758 + 0.652i$
Analytic cond. $4.67124$
Root an. cond. $2.16130$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.634i·2-s + 1.59·4-s + (−1.45 − 1.69i)5-s − 2.74i·7-s − 2.28i·8-s + (−1.07 + 0.924i)10-s − 4.00·11-s i·13-s − 1.74·14-s + 1.74·16-s + 2.35i·17-s − 4.69·19-s + (−2.32 − 2.70i)20-s + 2.54i·22-s − 1.88i·23-s + ⋯
L(s)  = 1  − 0.448i·2-s + 0.798·4-s + (−0.652 − 0.758i)5-s − 1.03i·7-s − 0.806i·8-s + (−0.340 + 0.292i)10-s − 1.20·11-s − 0.277i·13-s − 0.465·14-s + 0.437·16-s + 0.572i·17-s − 1.07·19-s + (−0.520 − 0.605i)20-s + 0.541i·22-s − 0.393i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.758 + 0.652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.758 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(585\)    =    \(3^{2} \cdot 5 \cdot 13\)
Sign: $-0.758 + 0.652i$
Analytic conductor: \(4.67124\)
Root analytic conductor: \(2.16130\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{585} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 585,\ (\ :1/2),\ -0.758 + 0.652i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.438006 - 1.18101i\)
\(L(\frac12)\) \(\approx\) \(0.438006 - 1.18101i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1.45 + 1.69i)T \)
13 \( 1 + iT \)
good2 \( 1 + 0.634iT - 2T^{2} \)
7 \( 1 + 2.74iT - 7T^{2} \)
11 \( 1 + 4.00T + 11T^{2} \)
17 \( 1 - 2.35iT - 17T^{2} \)
19 \( 1 + 4.69T + 19T^{2} \)
23 \( 1 + 1.88iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 3.19T + 31T^{2} \)
37 \( 1 + 6.44iT - 37T^{2} \)
41 \( 1 - 11.5T + 41T^{2} \)
43 \( 1 + 0.691iT - 43T^{2} \)
47 \( 1 + 5.89iT - 47T^{2} \)
53 \( 1 + 9.14iT - 53T^{2} \)
59 \( 1 + 1.17T + 59T^{2} \)
61 \( 1 + 4.44T + 61T^{2} \)
67 \( 1 + 4.80iT - 67T^{2} \)
71 \( 1 - 1.82T + 71T^{2} \)
73 \( 1 - 15.3iT - 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 - 8.42iT - 83T^{2} \)
89 \( 1 - 5.75T + 89T^{2} \)
97 \( 1 + 11.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73161203174019161797166654166, −9.746630425870981082729717812619, −8.405297342091321298461850471888, −7.74680303233264800811654412971, −6.93165142773440694713922012093, −5.74769094694097728110114125532, −4.48130556845990488304212654890, −3.61795182270042896105339190723, −2.25280338604563465614128521563, −0.66701581722334161858827862976, 2.33412025650085740503457298136, 2.98778379512224121316770747987, 4.64268559810894432170619755816, 5.81553929989416171783510900325, 6.50726324696665747460729853307, 7.56918018842840230311742252813, 8.067420475217635924830514883074, 9.154614390423478338362551401151, 10.44504079967662405940520302902, 10.99618001106397908698080803204

Graph of the $Z$-function along the critical line