L(s) = 1 | + (0.633 + 0.366i)2-s + (−0.732 − 1.26i)4-s + i·5-s + (−3.86 + 2.23i)7-s − 2.53i·8-s + (−0.366 + 0.633i)10-s + (3 + 1.73i)11-s + (0.866 + 3.5i)13-s − 3.26·14-s + (−0.535 + 0.928i)16-s + (3.36 + 5.83i)17-s + (−4.73 + 2.73i)19-s + (1.26 − 0.732i)20-s + (1.26 + 2.19i)22-s + (0.267 − 0.464i)23-s + ⋯ |
L(s) = 1 | + (0.448 + 0.258i)2-s + (−0.366 − 0.633i)4-s + 0.447i·5-s + (−1.46 + 0.843i)7-s − 0.896i·8-s + (−0.115 + 0.200i)10-s + (0.904 + 0.522i)11-s + (0.240 + 0.970i)13-s − 0.873·14-s + (−0.133 + 0.232i)16-s + (0.816 + 1.41i)17-s + (−1.08 + 0.626i)19-s + (0.283 − 0.163i)20-s + (0.270 + 0.468i)22-s + (0.0558 − 0.0967i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.698867 + 0.904760i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.698867 + 0.904760i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (-0.866 - 3.5i)T \) |
good | 2 | \( 1 + (-0.633 - 0.366i)T + (1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (3.86 - 2.23i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.36 - 5.83i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.73 - 2.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.267 + 0.464i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.36 - 2.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.19iT - 31T^{2} \) |
| 37 | \( 1 + (-3.46 - 2i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.56 + 2.63i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.133 + 0.232i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.196iT - 47T^{2} \) |
| 53 | \( 1 - 6.92T + 53T^{2} \) |
| 59 | \( 1 + (6.29 - 3.63i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.23 + 3.86i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.7 + 6.23i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.0 + 6.36i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 15.3iT - 73T^{2} \) |
| 79 | \( 1 - 1.92T + 79T^{2} \) |
| 83 | \( 1 - 2.53iT - 83T^{2} \) |
| 89 | \( 1 + (-1.09 - 0.633i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (14.2 - 8.23i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78508696632759995993115211162, −9.929900464988579942071078192840, −9.377395310214428906164001616611, −8.516870948218544002604579743587, −6.91488295905885495707368687832, −6.28689941170250164129331699146, −5.78474543324296343759292312419, −4.24867805179668452837455584890, −3.51168538098460044253316394634, −1.83926044146137998291496237781,
0.56429376745373671365365767598, 2.93124913532012893591252927253, 3.61319501772077358232080902547, 4.59261399854636875189340891307, 5.78659016646897275023533050333, 6.84077260972325405877085074232, 7.76951335903017027681210227399, 8.831614624065921093123442637677, 9.495718873236170043935111295944, 10.45471761724605824086919436723