Properties

Label 2-583-1.1-c5-0-41
Degree $2$
Conductor $583$
Sign $-1$
Analytic cond. $93.5037$
Root an. cond. $9.66973$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.02·2-s − 0.934·3-s + 32.4·4-s − 106.·5-s + 7.50·6-s − 253.·7-s − 3.80·8-s − 242.·9-s + 857.·10-s − 121·11-s − 30.3·12-s − 419.·13-s + 2.03e3·14-s + 99.7·15-s − 1.00e3·16-s − 132.·17-s + 1.94e3·18-s − 2.85e3·19-s − 3.46e3·20-s + 236.·21-s + 971.·22-s + 3.44e3·23-s + 3.55·24-s + 8.27e3·25-s + 3.36e3·26-s + 453.·27-s − 8.23e3·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.0599·3-s + 1.01·4-s − 1.90·5-s + 0.0850·6-s − 1.95·7-s − 0.0210·8-s − 0.996·9-s + 2.71·10-s − 0.301·11-s − 0.0608·12-s − 0.687·13-s + 2.77·14-s + 0.114·15-s − 0.984·16-s − 0.111·17-s + 1.41·18-s − 1.81·19-s − 1.93·20-s + 0.117·21-s + 0.427·22-s + 1.35·23-s + 0.00126·24-s + 2.64·25-s + 0.976·26-s + 0.119·27-s − 1.98·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 583 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 583 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(583\)    =    \(11 \cdot 53\)
Sign: $-1$
Analytic conductor: \(93.5037\)
Root analytic conductor: \(9.66973\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 583,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 121T \)
53 \( 1 + 2.80e3T \)
good2 \( 1 + 8.02T + 32T^{2} \)
3 \( 1 + 0.934T + 243T^{2} \)
5 \( 1 + 106.T + 3.12e3T^{2} \)
7 \( 1 + 253.T + 1.68e4T^{2} \)
13 \( 1 + 419.T + 3.71e5T^{2} \)
17 \( 1 + 132.T + 1.41e6T^{2} \)
19 \( 1 + 2.85e3T + 2.47e6T^{2} \)
23 \( 1 - 3.44e3T + 6.43e6T^{2} \)
29 \( 1 + 3.73e3T + 2.05e7T^{2} \)
31 \( 1 - 1.28e3T + 2.86e7T^{2} \)
37 \( 1 - 2.53e3T + 6.93e7T^{2} \)
41 \( 1 + 6.65e3T + 1.15e8T^{2} \)
43 \( 1 + 8.92e3T + 1.47e8T^{2} \)
47 \( 1 - 1.34e4T + 2.29e8T^{2} \)
59 \( 1 + 2.39e4T + 7.14e8T^{2} \)
61 \( 1 + 3.93e4T + 8.44e8T^{2} \)
67 \( 1 - 4.98e3T + 1.35e9T^{2} \)
71 \( 1 + 7.52e4T + 1.80e9T^{2} \)
73 \( 1 + 1.11e4T + 2.07e9T^{2} \)
79 \( 1 - 6.39e4T + 3.07e9T^{2} \)
83 \( 1 - 1.01e5T + 3.93e9T^{2} \)
89 \( 1 + 8.69e3T + 5.58e9T^{2} \)
97 \( 1 - 1.13e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.171313607283651943125366620423, −8.779665102535647884248311057262, −7.83209174881473027990150438386, −7.09430978244197789175651634331, −6.34273498161203123730861201952, −4.64705231400297385610728825716, −3.48484306123047061945855571713, −2.63277025740983356078224696298, −0.48511524684560820929880825206, 0, 0.48511524684560820929880825206, 2.63277025740983356078224696298, 3.48484306123047061945855571713, 4.64705231400297385610728825716, 6.34273498161203123730861201952, 7.09430978244197789175651634331, 7.83209174881473027990150438386, 8.779665102535647884248311057262, 9.171313607283651943125366620423

Graph of the $Z$-function along the critical line