Properties

Label 2-583-583.21-c1-0-19
Degree $2$
Conductor $583$
Sign $0.630 + 0.776i$
Analytic cond. $4.65527$
Root an. cond. $2.15760$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.12 − 0.349i)2-s + (−0.626 − 0.281i)3-s + (−0.510 − 0.352i)4-s + (1.91 + 0.115i)5-s + (0.603 + 0.535i)6-s + (4.39 − 2.30i)7-s + (1.89 + 2.42i)8-s + (−1.67 − 1.89i)9-s + (−2.10 − 0.798i)10-s + (2.13 + 2.54i)11-s + (0.220 + 0.364i)12-s + (0.105 − 0.0730i)13-s + (−5.73 + 1.05i)14-s + (−1.16 − 0.611i)15-s + (−0.842 − 2.22i)16-s + (0.698 + 5.75i)17-s + ⋯
L(s)  = 1  + (−0.793 − 0.247i)2-s + (−0.361 − 0.162i)3-s + (−0.255 − 0.176i)4-s + (0.855 + 0.0517i)5-s + (0.246 + 0.218i)6-s + (1.65 − 0.871i)7-s + (0.671 + 0.856i)8-s + (−0.558 − 0.630i)9-s + (−0.665 − 0.252i)10-s + (0.642 + 0.765i)11-s + (0.0636 + 0.105i)12-s + (0.0293 − 0.0202i)13-s + (−1.53 + 0.280i)14-s + (−0.300 − 0.157i)15-s + (−0.210 − 0.555i)16-s + (0.169 + 1.39i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 583 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 + 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 583 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.630 + 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(583\)    =    \(11 \cdot 53\)
Sign: $0.630 + 0.776i$
Analytic conductor: \(4.65527\)
Root analytic conductor: \(2.15760\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{583} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 583,\ (\ :1/2),\ 0.630 + 0.776i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.983525 - 0.468129i\)
\(L(\frac12)\) \(\approx\) \(0.983525 - 0.468129i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (-2.13 - 2.54i)T \)
53 \( 1 + (-0.925 + 7.22i)T \)
good2 \( 1 + (1.12 + 0.349i)T + (1.64 + 1.13i)T^{2} \)
3 \( 1 + (0.626 + 0.281i)T + (1.98 + 2.24i)T^{2} \)
5 \( 1 + (-1.91 - 0.115i)T + (4.96 + 0.602i)T^{2} \)
7 \( 1 + (-4.39 + 2.30i)T + (3.97 - 5.76i)T^{2} \)
13 \( 1 + (-0.105 + 0.0730i)T + (4.60 - 12.1i)T^{2} \)
17 \( 1 + (-0.698 - 5.75i)T + (-16.5 + 4.06i)T^{2} \)
19 \( 1 + (-0.0592 + 0.323i)T + (-17.7 - 6.73i)T^{2} \)
23 \( 1 + (-2.27 - 2.27i)T + 23iT^{2} \)
29 \( 1 + (-7.97 + 1.96i)T + (25.6 - 13.4i)T^{2} \)
31 \( 1 + (-1.45 + 2.40i)T + (-14.4 - 27.4i)T^{2} \)
37 \( 1 + (-0.312 + 0.118i)T + (27.6 - 24.5i)T^{2} \)
41 \( 1 + (3.45 + 5.71i)T + (-19.0 + 36.3i)T^{2} \)
43 \( 1 + (0.623 - 1.64i)T + (-32.1 - 28.5i)T^{2} \)
47 \( 1 + (1.24 + 1.10i)T + (5.66 + 46.6i)T^{2} \)
59 \( 1 + (-4.35 + 4.91i)T + (-7.11 - 58.5i)T^{2} \)
61 \( 1 + (-3.99 - 5.10i)T + (-14.5 + 59.2i)T^{2} \)
67 \( 1 + (3.87 - 0.709i)T + (62.6 - 23.7i)T^{2} \)
71 \( 1 + (12.3 - 5.55i)T + (47.0 - 53.1i)T^{2} \)
73 \( 1 + (0.240 - 0.307i)T + (-17.4 - 70.8i)T^{2} \)
79 \( 1 + (0.430 + 1.38i)T + (-65.0 + 44.8i)T^{2} \)
83 \( 1 + (2.05 + 2.05i)T + 83iT^{2} \)
89 \( 1 + (0.492 + 4.05i)T + (-86.4 + 21.2i)T^{2} \)
97 \( 1 + (1.52 - 1.35i)T + (11.6 - 96.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38183438211231979386055328228, −9.916685974611269422084512205957, −8.793108384350962219373269329449, −8.201613633469368109008625158724, −7.12761196935221818603213847318, −5.98933565305083958801077460940, −5.03649355312512718661611064334, −4.08543766394651258891970864354, −1.92960716984901161511314171193, −1.12684165535396952934868035605, 1.26600789088806165744621348945, 2.72108810615936625208464087308, 4.64835479850893612615855375115, 5.22213318553581950753513722123, 6.25890775831300431808713756670, 7.54188769223615499789032075562, 8.517712364411115347489795628809, 8.791984139070014852264527873474, 9.823499097459389965560789551422, 10.76366811380078497851001103257

Graph of the $Z$-function along the critical line