Properties

Label 2-5819-1.1-c1-0-141
Degree $2$
Conductor $5819$
Sign $1$
Analytic cond. $46.4649$
Root an. cond. $6.81652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.67·2-s + 3.39·3-s + 0.790·4-s − 1.45·5-s − 5.67·6-s − 1.59·7-s + 2.02·8-s + 8.55·9-s + 2.43·10-s + 11-s + 2.68·12-s − 1.30·13-s + 2.65·14-s − 4.95·15-s − 4.95·16-s − 2.95·17-s − 14.2·18-s − 3.43·19-s − 1.15·20-s − 5.40·21-s − 1.67·22-s + 6.86·24-s − 2.87·25-s + 2.18·26-s + 18.8·27-s − 1.25·28-s + 6.51·29-s + ⋯
L(s)  = 1  − 1.18·2-s + 1.96·3-s + 0.395·4-s − 0.652·5-s − 2.31·6-s − 0.601·7-s + 0.714·8-s + 2.85·9-s + 0.770·10-s + 0.301·11-s + 0.775·12-s − 0.362·13-s + 0.710·14-s − 1.28·15-s − 1.23·16-s − 0.715·17-s − 3.36·18-s − 0.787·19-s − 0.257·20-s − 1.18·21-s − 0.356·22-s + 1.40·24-s − 0.574·25-s + 0.428·26-s + 3.63·27-s − 0.237·28-s + 1.20·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5819\)    =    \(11 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(46.4649\)
Root analytic conductor: \(6.81652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5819,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.682043502\)
\(L(\frac12)\) \(\approx\) \(1.682043502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 1.67T + 2T^{2} \)
3 \( 1 - 3.39T + 3T^{2} \)
5 \( 1 + 1.45T + 5T^{2} \)
7 \( 1 + 1.59T + 7T^{2} \)
13 \( 1 + 1.30T + 13T^{2} \)
17 \( 1 + 2.95T + 17T^{2} \)
19 \( 1 + 3.43T + 19T^{2} \)
29 \( 1 - 6.51T + 29T^{2} \)
31 \( 1 - 1.28T + 31T^{2} \)
37 \( 1 + 0.915T + 37T^{2} \)
41 \( 1 - 0.847T + 41T^{2} \)
43 \( 1 + 4.84T + 43T^{2} \)
47 \( 1 - 4.08T + 47T^{2} \)
53 \( 1 - 9.11T + 53T^{2} \)
59 \( 1 + 7.33T + 59T^{2} \)
61 \( 1 - 14.6T + 61T^{2} \)
67 \( 1 - 14.4T + 67T^{2} \)
71 \( 1 - 15.3T + 71T^{2} \)
73 \( 1 - 12.0T + 73T^{2} \)
79 \( 1 + 5.34T + 79T^{2} \)
83 \( 1 - 8.73T + 83T^{2} \)
89 \( 1 + 0.274T + 89T^{2} \)
97 \( 1 - 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.202885115424736677154876113534, −7.87353951952110271613521010452, −6.83677796041936665527704159668, −6.74210915620981813508299439015, −4.88164363527641782497933429397, −4.10363634904805869727048527668, −3.62455301171581007444635412912, −2.54801720185589122508596597775, −1.97308774231776513143266408941, −0.74386488038721663259618992562, 0.74386488038721663259618992562, 1.97308774231776513143266408941, 2.54801720185589122508596597775, 3.62455301171581007444635412912, 4.10363634904805869727048527668, 4.88164363527641782497933429397, 6.74210915620981813508299439015, 6.83677796041936665527704159668, 7.87353951952110271613521010452, 8.202885115424736677154876113534

Graph of the $Z$-function along the critical line