Properties

Label 2-58-29.25-c3-0-3
Degree $2$
Conductor $58$
Sign $0.157 + 0.987i$
Analytic cond. $3.42211$
Root an. cond. $1.84989$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.445 + 1.94i)2-s + (−7.53 + 3.62i)3-s + (−3.60 − 1.73i)4-s + (2.19 − 9.59i)5-s + (−3.72 − 16.3i)6-s + (3.58 − 1.72i)7-s + (4.98 − 6.25i)8-s + (26.8 − 33.6i)9-s + (17.7 + 8.54i)10-s + (0.323 + 0.405i)11-s + 33.4·12-s + (−54.9 − 68.8i)13-s + (1.77 + 7.76i)14-s + (18.3 + 80.2i)15-s + (9.97 + 12.5i)16-s − 101.·17-s + ⋯
L(s)  = 1  + (−0.157 + 0.689i)2-s + (−1.45 + 0.698i)3-s + (−0.450 − 0.216i)4-s + (0.195 − 0.858i)5-s + (−0.253 − 1.10i)6-s + (0.193 − 0.0933i)7-s + (0.220 − 0.276i)8-s + (0.992 − 1.24i)9-s + (0.560 + 0.270i)10-s + (0.00885 + 0.0111i)11-s + 0.805·12-s + (−1.17 − 1.46i)13-s + (0.0338 + 0.148i)14-s + (0.315 + 1.38i)15-s + (0.155 + 0.195i)16-s − 1.45·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58\)    =    \(2 \cdot 29\)
Sign: $0.157 + 0.987i$
Analytic conductor: \(3.42211\)
Root analytic conductor: \(1.84989\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{58} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 58,\ (\ :3/2),\ 0.157 + 0.987i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.253271 - 0.216105i\)
\(L(\frac12)\) \(\approx\) \(0.253271 - 0.216105i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.445 - 1.94i)T \)
29 \( 1 + (-45.3 + 149. i)T \)
good3 \( 1 + (7.53 - 3.62i)T + (16.8 - 21.1i)T^{2} \)
5 \( 1 + (-2.19 + 9.59i)T + (-112. - 54.2i)T^{2} \)
7 \( 1 + (-3.58 + 1.72i)T + (213. - 268. i)T^{2} \)
11 \( 1 + (-0.323 - 0.405i)T + (-296. + 1.29e3i)T^{2} \)
13 \( 1 + (54.9 + 68.8i)T + (-488. + 2.14e3i)T^{2} \)
17 \( 1 + 101.T + 4.91e3T^{2} \)
19 \( 1 + (12.1 + 5.83i)T + (4.27e3 + 5.36e3i)T^{2} \)
23 \( 1 + (17.5 + 76.9i)T + (-1.09e4 + 5.27e3i)T^{2} \)
31 \( 1 + (69.2 - 303. i)T + (-2.68e4 - 1.29e4i)T^{2} \)
37 \( 1 + (66.2 - 83.0i)T + (-1.12e4 - 4.93e4i)T^{2} \)
41 \( 1 - 47.4T + 6.89e4T^{2} \)
43 \( 1 + (15.0 + 65.9i)T + (-7.16e4 + 3.44e4i)T^{2} \)
47 \( 1 + (302. + 379. i)T + (-2.31e4 + 1.01e5i)T^{2} \)
53 \( 1 + (-123. + 541. i)T + (-1.34e5 - 6.45e4i)T^{2} \)
59 \( 1 + 269.T + 2.05e5T^{2} \)
61 \( 1 + (-484. + 233. i)T + (1.41e5 - 1.77e5i)T^{2} \)
67 \( 1 + (612. - 767. i)T + (-6.69e4 - 2.93e5i)T^{2} \)
71 \( 1 + (-4.52 - 5.67i)T + (-7.96e4 + 3.48e5i)T^{2} \)
73 \( 1 + (-79.0 - 346. i)T + (-3.50e5 + 1.68e5i)T^{2} \)
79 \( 1 + (-545. + 683. i)T + (-1.09e5 - 4.80e5i)T^{2} \)
83 \( 1 + (-804. - 387. i)T + (3.56e5 + 4.47e5i)T^{2} \)
89 \( 1 + (151. - 665. i)T + (-6.35e5 - 3.05e5i)T^{2} \)
97 \( 1 + (-207. - 99.8i)T + (5.69e5 + 7.13e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.86250541113732487990371558005, −13.11937816594420558142464302972, −12.18415716084931593977987520325, −10.78355479607303013729093682137, −9.865368469872521181339427097437, −8.464627893919653287857171142707, −6.72796035087196738573379233537, −5.32920874927568617757330739726, −4.67558138384288204375360473904, −0.28805240011110930507424033909, 2.05982512430174440896169743274, 4.67988995702787311341231859629, 6.33833862339488567761725610896, 7.30752057783969630356189062909, 9.382437350487419003405366340537, 10.79148317285018862004285974327, 11.43559581541931473389459086331, 12.32005381820108833301404113781, 13.49860487665537604858011084647, 14.73137101743617049051407438181

Graph of the $Z$-function along the critical line