Properties

Label 2-58-29.23-c3-0-5
Degree $2$
Conductor $58$
Sign $-0.288 + 0.957i$
Analytic cond. $3.42211$
Root an. cond. $1.84989$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.24 − 1.56i)2-s + (0.975 − 4.27i)3-s + (−0.890 − 3.89i)4-s + (−2.22 + 2.78i)5-s + (−5.46 − 6.85i)6-s + (5.92 − 25.9i)7-s + (−7.20 − 3.47i)8-s + (7.00 + 3.37i)9-s + (1.58 + 6.95i)10-s + (−59.9 + 28.8i)11-s − 17.5·12-s + (47.8 − 23.0i)13-s + (−33.2 − 41.6i)14-s + (9.75 + 12.2i)15-s + (−14.4 + 6.94i)16-s + 127.·17-s + ⋯
L(s)  = 1  + (0.440 − 0.552i)2-s + (0.187 − 0.822i)3-s + (−0.111 − 0.487i)4-s + (−0.198 + 0.249i)5-s + (−0.372 − 0.466i)6-s + (0.319 − 1.40i)7-s + (−0.318 − 0.153i)8-s + (0.259 + 0.124i)9-s + (0.0502 + 0.220i)10-s + (−1.64 + 0.791i)11-s − 0.421·12-s + (1.02 − 0.491i)13-s + (−0.633 − 0.794i)14-s + (0.167 + 0.210i)15-s + (−0.225 + 0.108i)16-s + 1.81·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.288 + 0.957i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.288 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58\)    =    \(2 \cdot 29\)
Sign: $-0.288 + 0.957i$
Analytic conductor: \(3.42211\)
Root analytic conductor: \(1.84989\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{58} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 58,\ (\ :3/2),\ -0.288 + 0.957i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.05920 - 1.42548i\)
\(L(\frac12)\) \(\approx\) \(1.05920 - 1.42548i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.24 + 1.56i)T \)
29 \( 1 + (-2.97 - 156. i)T \)
good3 \( 1 + (-0.975 + 4.27i)T + (-24.3 - 11.7i)T^{2} \)
5 \( 1 + (2.22 - 2.78i)T + (-27.8 - 121. i)T^{2} \)
7 \( 1 + (-5.92 + 25.9i)T + (-309. - 148. i)T^{2} \)
11 \( 1 + (59.9 - 28.8i)T + (829. - 1.04e3i)T^{2} \)
13 \( 1 + (-47.8 + 23.0i)T + (1.36e3 - 1.71e3i)T^{2} \)
17 \( 1 - 127.T + 4.91e3T^{2} \)
19 \( 1 + (-5.73 - 25.1i)T + (-6.17e3 + 2.97e3i)T^{2} \)
23 \( 1 + (-31.4 - 39.4i)T + (-2.70e3 + 1.18e4i)T^{2} \)
31 \( 1 + (2.49 - 3.12i)T + (-6.62e3 - 2.90e4i)T^{2} \)
37 \( 1 + (205. + 98.8i)T + (3.15e4 + 3.96e4i)T^{2} \)
41 \( 1 + 87.6T + 6.89e4T^{2} \)
43 \( 1 + (96.7 + 121. i)T + (-1.76e4 + 7.75e4i)T^{2} \)
47 \( 1 + (132. - 63.7i)T + (6.47e4 - 8.11e4i)T^{2} \)
53 \( 1 + (-255. + 320. i)T + (-3.31e4 - 1.45e5i)T^{2} \)
59 \( 1 + 613.T + 2.05e5T^{2} \)
61 \( 1 + (122. - 537. i)T + (-2.04e5 - 9.84e4i)T^{2} \)
67 \( 1 + (268. + 129. i)T + (1.87e5 + 2.35e5i)T^{2} \)
71 \( 1 + (-231. + 111. i)T + (2.23e5 - 2.79e5i)T^{2} \)
73 \( 1 + (453. + 568. i)T + (-8.65e4 + 3.79e5i)T^{2} \)
79 \( 1 + (-733. - 353. i)T + (3.07e5 + 3.85e5i)T^{2} \)
83 \( 1 + (-221. - 971. i)T + (-5.15e5 + 2.48e5i)T^{2} \)
89 \( 1 + (801. - 1.00e3i)T + (-1.56e5 - 6.87e5i)T^{2} \)
97 \( 1 + (-62.7 - 274. i)T + (-8.22e5 + 3.95e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93578600509549504128218698811, −13.21725729670885770155839672803, −12.37837042808302173416668404787, −10.75534916215669623584108168283, −10.20305169002854226953113722458, −7.898894858762933888625249162906, −7.21188925667482494823447214134, −5.20329689933083015594724828147, −3.42688360246523658525624054755, −1.33120448849029498410506129169, 3.15347426354984022738691028321, 4.88888799899998856838008991650, 5.92741562544104890443703234466, 8.010731129370079792395480532173, 8.862454668719584627373803538221, 10.31641974298432351434371496719, 11.75871442412836784742238405733, 12.84056213471259319905492179241, 14.10684560949742489525810078171, 15.32692510844469295142652298902

Graph of the $Z$-function along the critical line