Properties

Label 2-76e2-1.1-c1-0-60
Degree $2$
Conductor $5776$
Sign $-1$
Analytic cond. $46.1215$
Root an. cond. $6.79128$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·3-s − 1.23·5-s − 3·7-s + 3.85·9-s − 0.618·11-s − 13-s + 3.23·15-s + 5.23·17-s + 7.85·21-s − 7.61·23-s − 3.47·25-s − 2.23·27-s − 1.38·29-s + 2.14·31-s + 1.61·33-s + 3.70·35-s + 2.14·37-s + 2.61·39-s − 3·41-s + 6.85·43-s − 4.76·45-s − 3·47-s + 2·49-s − 13.7·51-s + 9.32·53-s + 0.763·55-s + 15.3·59-s + ⋯
L(s)  = 1  − 1.51·3-s − 0.552·5-s − 1.13·7-s + 1.28·9-s − 0.186·11-s − 0.277·13-s + 0.835·15-s + 1.26·17-s + 1.71·21-s − 1.58·23-s − 0.694·25-s − 0.430·27-s − 0.256·29-s + 0.385·31-s + 0.281·33-s + 0.626·35-s + 0.352·37-s + 0.419·39-s − 0.468·41-s + 1.04·43-s − 0.710·45-s − 0.437·47-s + 0.285·49-s − 1.91·51-s + 1.28·53-s + 0.103·55-s + 1.99·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.1215\)
Root analytic conductor: \(6.79128\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5776,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 2.61T + 3T^{2} \)
5 \( 1 + 1.23T + 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
11 \( 1 + 0.618T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 5.23T + 17T^{2} \)
23 \( 1 + 7.61T + 23T^{2} \)
29 \( 1 + 1.38T + 29T^{2} \)
31 \( 1 - 2.14T + 31T^{2} \)
37 \( 1 - 2.14T + 37T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 - 6.85T + 43T^{2} \)
47 \( 1 + 3T + 47T^{2} \)
53 \( 1 - 9.32T + 53T^{2} \)
59 \( 1 - 15.3T + 59T^{2} \)
61 \( 1 + 5.76T + 61T^{2} \)
67 \( 1 - 7T + 67T^{2} \)
71 \( 1 + 1.47T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 - 13.4T + 79T^{2} \)
83 \( 1 - 0.472T + 83T^{2} \)
89 \( 1 + 12.2T + 89T^{2} \)
97 \( 1 - 7.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63751817737909277209078283548, −6.90630907662818607417647333284, −6.19132751398449113348874735912, −5.73082788026410644270678688340, −5.04929037281067584551559608483, −4.05086223462941059673015450705, −3.50193619472823696350193212217, −2.30626639995931861879522495571, −0.863803242471009052766916878900, 0, 0.863803242471009052766916878900, 2.30626639995931861879522495571, 3.50193619472823696350193212217, 4.05086223462941059673015450705, 5.04929037281067584551559608483, 5.73082788026410644270678688340, 6.19132751398449113348874735912, 6.90630907662818607417647333284, 7.63751817737909277209078283548

Graph of the $Z$-function along the critical line