Properties

Label 2-76e2-1.1-c1-0-46
Degree $2$
Conductor $5776$
Sign $1$
Analytic cond. $46.1215$
Root an. cond. $6.79128$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.28·3-s + 4.24·5-s − 3.37·7-s − 1.34·9-s + 0.495·11-s + 3.53·13-s − 5.46·15-s − 3.96·17-s + 4.34·21-s − 0.943·23-s + 13.0·25-s + 5.59·27-s + 2.66·29-s + 6.83·31-s − 0.638·33-s − 14.3·35-s − 6.73·37-s − 4.54·39-s + 2.42·41-s − 11.9·43-s − 5.69·45-s − 1.11·47-s + 4.37·49-s + 5.10·51-s − 1.01·53-s + 2.10·55-s + 6.59·59-s + ⋯
L(s)  = 1  − 0.743·3-s + 1.89·5-s − 1.27·7-s − 0.447·9-s + 0.149·11-s + 0.979·13-s − 1.41·15-s − 0.962·17-s + 0.947·21-s − 0.196·23-s + 2.60·25-s + 1.07·27-s + 0.495·29-s + 1.22·31-s − 0.111·33-s − 2.41·35-s − 1.10·37-s − 0.728·39-s + 0.378·41-s − 1.82·43-s − 0.849·45-s − 0.163·47-s + 0.624·49-s + 0.715·51-s − 0.139·53-s + 0.283·55-s + 0.858·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.1215\)
Root analytic conductor: \(6.79128\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5776,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.714791024\)
\(L(\frac12)\) \(\approx\) \(1.714791024\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 1.28T + 3T^{2} \)
5 \( 1 - 4.24T + 5T^{2} \)
7 \( 1 + 3.37T + 7T^{2} \)
11 \( 1 - 0.495T + 11T^{2} \)
13 \( 1 - 3.53T + 13T^{2} \)
17 \( 1 + 3.96T + 17T^{2} \)
23 \( 1 + 0.943T + 23T^{2} \)
29 \( 1 - 2.66T + 29T^{2} \)
31 \( 1 - 6.83T + 31T^{2} \)
37 \( 1 + 6.73T + 37T^{2} \)
41 \( 1 - 2.42T + 41T^{2} \)
43 \( 1 + 11.9T + 43T^{2} \)
47 \( 1 + 1.11T + 47T^{2} \)
53 \( 1 + 1.01T + 53T^{2} \)
59 \( 1 - 6.59T + 59T^{2} \)
61 \( 1 - 9.46T + 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 - 9.42T + 71T^{2} \)
73 \( 1 - 3.25T + 73T^{2} \)
79 \( 1 - 5.75T + 79T^{2} \)
83 \( 1 - 7.78T + 83T^{2} \)
89 \( 1 + 2.68T + 89T^{2} \)
97 \( 1 + 1.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.466275356782814250552016726550, −6.87335499998128307891716416611, −6.41588085272336902063366536102, −6.19117160416482927018473891859, −5.41805231661970723390989070429, −4.76836754424097034415063113520, −3.49853127751309803211625119413, −2.73527426303988249587184237424, −1.86080364842365174152838362813, −0.71473021413484437409781558986, 0.71473021413484437409781558986, 1.86080364842365174152838362813, 2.73527426303988249587184237424, 3.49853127751309803211625119413, 4.76836754424097034415063113520, 5.41805231661970723390989070429, 6.19117160416482927018473891859, 6.41588085272336902063366536102, 6.87335499998128307891716416611, 8.466275356782814250552016726550

Graph of the $Z$-function along the critical line