L(s) = 1 | − 2·2-s − 2·3-s + 3·4-s − 6·5-s + 4·6-s + 4·7-s − 4·8-s + 3·9-s + 12·10-s + 6·11-s − 6·12-s − 6·13-s − 8·14-s + 12·15-s + 5·16-s − 6·17-s − 6·18-s + 2·19-s − 18·20-s − 8·21-s − 12·22-s + 8·23-s + 8·24-s + 19·25-s + 12·26-s − 4·27-s + 12·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 3/2·4-s − 2.68·5-s + 1.63·6-s + 1.51·7-s − 1.41·8-s + 9-s + 3.79·10-s + 1.80·11-s − 1.73·12-s − 1.66·13-s − 2.13·14-s + 3.09·15-s + 5/4·16-s − 1.45·17-s − 1.41·18-s + 0.458·19-s − 4.02·20-s − 1.74·21-s − 2.55·22-s + 1.66·23-s + 1.63·24-s + 19/5·25-s + 2.35·26-s − 0.769·27-s + 2.26·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 33246756 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33246756 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5787533031\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5787533031\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.207748540636653322879326202863, −7.965256909295838743820199793751, −7.50381397018671123601698387380, −7.40887100255026011088594770145, −6.93401259258691414846028618990, −6.85679994107058310326884933383, −6.31436120657170730850553022155, −6.13367014181589791569156030602, −5.15216959442702293203992330905, −4.94569752888614640859071495219, −4.63802972020580127139219304120, −4.43281771143788091713413696267, −3.95045181729761275550677621635, −3.58222450740527879032291245861, −2.77958626865337149500515345478, −2.68928823137708934335773454499, −1.54478722590053019192525653082, −1.52068371807264032003466782898, −0.63162444083299079666649523901, −0.49188365232248440895710325323,
0.49188365232248440895710325323, 0.63162444083299079666649523901, 1.52068371807264032003466782898, 1.54478722590053019192525653082, 2.68928823137708934335773454499, 2.77958626865337149500515345478, 3.58222450740527879032291245861, 3.95045181729761275550677621635, 4.43281771143788091713413696267, 4.63802972020580127139219304120, 4.94569752888614640859071495219, 5.15216959442702293203992330905, 6.13367014181589791569156030602, 6.31436120657170730850553022155, 6.85679994107058310326884933383, 6.93401259258691414846028618990, 7.40887100255026011088594770145, 7.50381397018671123601698387380, 7.965256909295838743820199793751, 8.207748540636653322879326202863