Properties

Label 2-5766-1.1-c1-0-137
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 1.54·5-s + 6-s − 2.56·7-s + 8-s + 9-s − 1.54·10-s + 2.03·11-s + 12-s − 1.93·13-s − 2.56·14-s − 1.54·15-s + 16-s + 2.16·17-s + 18-s − 3.78·19-s − 1.54·20-s − 2.56·21-s + 2.03·22-s − 5.52·23-s + 24-s − 2.60·25-s − 1.93·26-s + 27-s − 2.56·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.691·5-s + 0.408·6-s − 0.971·7-s + 0.353·8-s + 0.333·9-s − 0.489·10-s + 0.614·11-s + 0.288·12-s − 0.537·13-s − 0.686·14-s − 0.399·15-s + 0.250·16-s + 0.524·17-s + 0.235·18-s − 0.869·19-s − 0.345·20-s − 0.560·21-s + 0.434·22-s − 1.15·23-s + 0.204·24-s − 0.521·25-s − 0.379·26-s + 0.192·27-s − 0.485·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
31 \( 1 \)
good5 \( 1 + 1.54T + 5T^{2} \)
7 \( 1 + 2.56T + 7T^{2} \)
11 \( 1 - 2.03T + 11T^{2} \)
13 \( 1 + 1.93T + 13T^{2} \)
17 \( 1 - 2.16T + 17T^{2} \)
19 \( 1 + 3.78T + 19T^{2} \)
23 \( 1 + 5.52T + 23T^{2} \)
29 \( 1 - 6.88T + 29T^{2} \)
37 \( 1 - 3.51T + 37T^{2} \)
41 \( 1 - 7.22T + 41T^{2} \)
43 \( 1 + 10.0T + 43T^{2} \)
47 \( 1 - 4.32T + 47T^{2} \)
53 \( 1 + 2.13T + 53T^{2} \)
59 \( 1 + 9.10T + 59T^{2} \)
61 \( 1 - 4.67T + 61T^{2} \)
67 \( 1 + 13.9T + 67T^{2} \)
71 \( 1 + 5.30T + 71T^{2} \)
73 \( 1 + 11.9T + 73T^{2} \)
79 \( 1 + 13.7T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 + 18.5T + 89T^{2} \)
97 \( 1 - 4.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69867000136222772855242451709, −7.01923948668947049878655653042, −6.30808342537846509958782217642, −5.74096599009706393295126599059, −4.41201826927204599664985344654, −4.19499701909678705783994234340, −3.24427722475753769489659617810, −2.69403394399565253899210643987, −1.55520047455987833931725048777, 0, 1.55520047455987833931725048777, 2.69403394399565253899210643987, 3.24427722475753769489659617810, 4.19499701909678705783994234340, 4.41201826927204599664985344654, 5.74096599009706393295126599059, 6.30808342537846509958782217642, 7.01923948668947049878655653042, 7.69867000136222772855242451709

Graph of the $Z$-function along the critical line