Properties

Label 2-24e2-1.1-c7-0-38
Degree $2$
Conductor $576$
Sign $1$
Analytic cond. $179.933$
Root an. cond. $13.4139$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 430·5-s + 1.22e3·7-s + 3.16e3·11-s − 6.11e3·13-s + 1.62e4·17-s − 5.47e3·19-s + 1.57e3·23-s + 1.06e5·25-s + 1.22e5·29-s − 2.51e5·31-s + 5.26e5·35-s + 5.23e4·37-s + 3.19e5·41-s + 7.10e5·43-s + 2.84e5·47-s + 6.74e5·49-s + 2.96e5·53-s + 1.36e6·55-s + 8.97e5·59-s + 8.84e5·61-s − 2.63e6·65-s + 4.65e6·67-s − 2.71e6·71-s − 5.67e6·73-s + 3.87e6·77-s + 5.12e6·79-s + 1.56e6·83-s + ⋯
L(s)  = 1  + 1.53·5-s + 1.34·7-s + 0.716·11-s − 0.772·13-s + 0.803·17-s − 0.183·19-s + 0.0270·23-s + 1.36·25-s + 0.935·29-s − 1.51·31-s + 2.07·35-s + 0.169·37-s + 0.723·41-s + 1.36·43-s + 0.399·47-s + 0.819·49-s + 0.273·53-s + 1.10·55-s + 0.568·59-s + 0.499·61-s − 1.18·65-s + 1.89·67-s − 0.898·71-s − 1.70·73-s + 0.966·77-s + 1.16·79-s + 0.300·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(179.933\)
Root analytic conductor: \(13.4139\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.461871771\)
\(L(\frac12)\) \(\approx\) \(4.461871771\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 86 p T + p^{7} T^{2} \)
7 \( 1 - 1224 T + p^{7} T^{2} \)
11 \( 1 - 3164 T + p^{7} T^{2} \)
13 \( 1 + 6118 T + p^{7} T^{2} \)
17 \( 1 - 16270 T + p^{7} T^{2} \)
19 \( 1 + 5476 T + p^{7} T^{2} \)
23 \( 1 - 1576 T + p^{7} T^{2} \)
29 \( 1 - 122838 T + p^{7} T^{2} \)
31 \( 1 + 251360 T + p^{7} T^{2} \)
37 \( 1 - 52338 T + p^{7} T^{2} \)
41 \( 1 - 319398 T + p^{7} T^{2} \)
43 \( 1 - 710788 T + p^{7} T^{2} \)
47 \( 1 - 284112 T + p^{7} T^{2} \)
53 \( 1 - 296062 T + p^{7} T^{2} \)
59 \( 1 - 897548 T + p^{7} T^{2} \)
61 \( 1 - 884810 T + p^{7} T^{2} \)
67 \( 1 - 4659692 T + p^{7} T^{2} \)
71 \( 1 + 2710792 T + p^{7} T^{2} \)
73 \( 1 + 5670854 T + p^{7} T^{2} \)
79 \( 1 - 5124176 T + p^{7} T^{2} \)
83 \( 1 - 1563556 T + p^{7} T^{2} \)
89 \( 1 + 11605674 T + p^{7} T^{2} \)
97 \( 1 - 10931618 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.577746694794394605243501038977, −8.878969116675375605437134511676, −7.83317514767474353323449371536, −6.88938660796647187552506833266, −5.77843077831126401858569610708, −5.20097208480889062503659541077, −4.15290021035455728311869896281, −2.59460824472065701986812311712, −1.77960985790409767400029484248, −0.974238019367193453601253313256, 0.974238019367193453601253313256, 1.77960985790409767400029484248, 2.59460824472065701986812311712, 4.15290021035455728311869896281, 5.20097208480889062503659541077, 5.77843077831126401858569610708, 6.88938660796647187552506833266, 7.83317514767474353323449371536, 8.878969116675375605437134511676, 9.577746694794394605243501038977

Graph of the $Z$-function along the critical line