L(s) = 1 | + (−9.40 − 9.40i)5-s + 3.57·7-s + (3.36 − 3.36i)11-s + (26.9 + 26.9i)13-s − 12.7i·17-s + (50.0 − 50.0i)19-s − 208. i·23-s + 51.7i·25-s + (−134. + 134. i)29-s − 80.1i·31-s + (−33.5 − 33.5i)35-s + (−308. + 308. i)37-s + 172.·41-s + (87.0 + 87.0i)43-s − 525.·47-s + ⋯ |
L(s) = 1 | + (−0.840 − 0.840i)5-s + 0.192·7-s + (0.0921 − 0.0921i)11-s + (0.574 + 0.574i)13-s − 0.182i·17-s + (0.604 − 0.604i)19-s − 1.88i·23-s + 0.413i·25-s + (−0.859 + 0.859i)29-s − 0.464i·31-s + (−0.162 − 0.162i)35-s + (−1.37 + 1.37i)37-s + 0.658·41-s + (0.308 + 0.308i)43-s − 1.63·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.106i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.994 + 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5469502711\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5469502711\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (9.40 + 9.40i)T + 125iT^{2} \) |
| 7 | \( 1 - 3.57T + 343T^{2} \) |
| 11 | \( 1 + (-3.36 + 3.36i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-26.9 - 26.9i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 12.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-50.0 + 50.0i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 208. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (134. - 134. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 80.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (308. - 308. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 172.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-87.0 - 87.0i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 525.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (127. + 127. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (172. - 172. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (332. + 332. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (556. - 556. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 450. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 797. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 70.1iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (636. + 636. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 925.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.26e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.805902953328290334284899122278, −8.778599762727215749221327952274, −8.339606765523499083015915876796, −7.26033172532030333966817943848, −6.30224492041215079616088548033, −4.96705658932311604824402175382, −4.33357113105702193393003628044, −3.12434256404790428674892605037, −1.46577193341912168399940797872, −0.16772998675338441412254350854,
1.59821684466565612935851178805, 3.25018523155635930891677147136, 3.81205603774173136943058610166, 5.27660114780792387377981580703, 6.21612395314081139976387842873, 7.49232938672828306913412951057, 7.73846285882818946547696032247, 8.988356548368652014195395609551, 9.952487183871455677413093299530, 10.91891441888725899179449458213