L(s) = 1 | + (3.62 + 3.62i)5-s + 33.7·7-s + (−44.1 + 44.1i)11-s + (42.1 + 42.1i)13-s − 17.6i·17-s + (−99.2 + 99.2i)19-s + 83.8i·23-s − 98.7i·25-s + (89.7 − 89.7i)29-s − 46.2i·31-s + (122. + 122. i)35-s + (−7.47 + 7.47i)37-s − 299.·41-s + (56.3 + 56.3i)43-s − 280.·47-s + ⋯ |
L(s) = 1 | + (0.324 + 0.324i)5-s + 1.82·7-s + (−1.21 + 1.21i)11-s + (0.898 + 0.898i)13-s − 0.251i·17-s + (−1.19 + 1.19i)19-s + 0.759i·23-s − 0.789i·25-s + (0.574 − 0.574i)29-s − 0.267i·31-s + (0.590 + 0.590i)35-s + (−0.0332 + 0.0332i)37-s − 1.13·41-s + (0.199 + 0.199i)43-s − 0.869·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0142 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0142 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.180653735\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.180653735\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3.62 - 3.62i)T + 125iT^{2} \) |
| 7 | \( 1 - 33.7T + 343T^{2} \) |
| 11 | \( 1 + (44.1 - 44.1i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-42.1 - 42.1i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 17.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (99.2 - 99.2i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 83.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-89.7 + 89.7i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 46.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (7.47 - 7.47i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 299.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-56.3 - 56.3i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 280.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (8.15 + 8.15i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (193. - 193. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-127. - 127. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-110. + 110. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 - 1.07e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.01e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 161. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (64.4 + 64.4i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 177.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 559.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51936532325503832894127440784, −9.881996356583730255836449258027, −8.497009265869616003875025351854, −8.025872838926310479824195682264, −7.04107093313795568059085292232, −5.89811508779558789230348953916, −4.86213434383781549523968540723, −4.12794106411041520707196268524, −2.29422781684927942489512399565, −1.59680969854467944416397697485,
0.63874686015072853132396754101, 1.89938770402641654427964712339, 3.20240140650052383546683533475, 4.74844683296314091327791700450, 5.27838767516651548731191722137, 6.31105251317681506517525257585, 7.72661264645287604827420694686, 8.442358230269454507443635852336, 8.800657915407311019560143303454, 10.63939292200164084617805211902