L(s) = 1 | + (−3.62 + 3.62i)5-s + 33.7·7-s + (44.1 + 44.1i)11-s + (42.1 − 42.1i)13-s − 17.6i·17-s + (−99.2 − 99.2i)19-s + 83.8i·23-s + 98.7i·25-s + (−89.7 − 89.7i)29-s + 46.2i·31-s + (−122. + 122. i)35-s + (−7.47 − 7.47i)37-s + 299.·41-s + (56.3 − 56.3i)43-s + 280.·47-s + ⋯ |
L(s) = 1 | + (−0.324 + 0.324i)5-s + 1.82·7-s + (1.21 + 1.21i)11-s + (0.898 − 0.898i)13-s − 0.251i·17-s + (−1.19 − 1.19i)19-s + 0.759i·23-s + 0.789i·25-s + (−0.574 − 0.574i)29-s + 0.267i·31-s + (−0.590 + 0.590i)35-s + (−0.0332 − 0.0332i)37-s + 1.13·41-s + (0.199 − 0.199i)43-s + 0.869·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.346i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.937 - 0.346i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.596471617\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.596471617\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (3.62 - 3.62i)T - 125iT^{2} \) |
| 7 | \( 1 - 33.7T + 343T^{2} \) |
| 11 | \( 1 + (-44.1 - 44.1i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-42.1 + 42.1i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 17.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (99.2 + 99.2i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 83.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (89.7 + 89.7i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 46.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (7.47 + 7.47i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 299.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-56.3 + 56.3i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 280.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-8.15 + 8.15i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-193. - 193. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-127. + 127. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-110. - 110. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 1.07e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.01e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 161. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-64.4 + 64.4i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 177.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 559.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65380925772209327486482503405, −9.357245858137399042602143034970, −8.582053022193636502741563121976, −7.64814218183137472055962887254, −6.98402687166812316106346511466, −5.68820232972221964694915144686, −4.63232854516021582700991368592, −3.87364150107803686234930704569, −2.21530091047345837839363132449, −1.13724059791649983276565645183,
1.00853623526455519124408793077, 1.95144242611764419877406690518, 3.91363655911059846680983382189, 4.36145545832585568997988014080, 5.73163234274964708234145050459, 6.52507773984156977906150523119, 7.907870344455352006259515683029, 8.525066471054619685014886950706, 9.002692100357846742351899769770, 10.59886391866156436732425840037