L(s) = 1 | + (−2.40 + 2.40i)5-s + 11.7·7-s + (−34.7 − 34.7i)11-s + (−3.17 + 3.17i)13-s + 98.0i·17-s + (15.9 + 15.9i)19-s − 69.6i·23-s + 113. i·25-s + (15.9 + 15.9i)29-s + 121. i·31-s + (−28.2 + 28.2i)35-s + (−37.0 − 37.0i)37-s − 59.3·41-s + (241. − 241. i)43-s − 395.·47-s + ⋯ |
L(s) = 1 | + (−0.215 + 0.215i)5-s + 0.632·7-s + (−0.952 − 0.952i)11-s + (−0.0678 + 0.0678i)13-s + 1.39i·17-s + (0.192 + 0.192i)19-s − 0.631i·23-s + 0.907i·25-s + (0.102 + 0.102i)29-s + 0.702i·31-s + (−0.136 + 0.136i)35-s + (−0.164 − 0.164i)37-s − 0.225·41-s + (0.857 − 0.857i)43-s − 1.22·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.575 - 0.817i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.575 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9229532055\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9229532055\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (2.40 - 2.40i)T - 125iT^{2} \) |
| 7 | \( 1 - 11.7T + 343T^{2} \) |
| 11 | \( 1 + (34.7 + 34.7i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (3.17 - 3.17i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 98.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-15.9 - 15.9i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 69.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-15.9 - 15.9i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 121. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (37.0 + 37.0i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 59.3T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-241. + 241. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 395.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (458. - 458. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (257. + 257. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (373. - 373. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-648. - 648. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 787. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.07e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 382. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (491. - 491. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 624.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.66e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85301146335238486188803954850, −9.876711640337683340814040861724, −8.575510315274121703625397812620, −8.144549287455405647202256431914, −7.12147738961219628964013459314, −5.97581604290441118315515885633, −5.13987521686405830759865161301, −3.92891552702153387926699156161, −2.83177443521578552550992491505, −1.40897609520976445705861930041,
0.27153939511387907623363876714, 1.88663445147195212154837218863, 3.06874862141766250497885523918, 4.65049625002367267489457524594, 5.04044038601626259194446874533, 6.41887889504706215199809217122, 7.61660841014596919456774142616, 7.959653692365072848022981961096, 9.272953027926231681385072503785, 9.918427515473480887132738496638