L(s) = 1 | + (5.80 + 5.80i)5-s − 3.41i·7-s + (−24.3 − 24.3i)11-s + (−23.6 + 23.6i)13-s − 3.82·17-s + (80.9 − 80.9i)19-s − 133. i·23-s − 57.6i·25-s + (−55.9 + 55.9i)29-s + 87.0·31-s + (19.8 − 19.8i)35-s + (−151. − 151. i)37-s + 228. i·41-s + (−209. − 209. i)43-s + 91.1·47-s + ⋯ |
L(s) = 1 | + (0.519 + 0.519i)5-s − 0.184i·7-s + (−0.668 − 0.668i)11-s + (−0.504 + 0.504i)13-s − 0.0546·17-s + (0.977 − 0.977i)19-s − 1.21i·23-s − 0.460i·25-s + (−0.358 + 0.358i)29-s + 0.504·31-s + (0.0957 − 0.0957i)35-s + (−0.674 − 0.674i)37-s + 0.872i·41-s + (−0.741 − 0.741i)43-s + 0.282·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.287 + 0.957i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.287 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.610772215\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.610772215\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-5.80 - 5.80i)T + 125iT^{2} \) |
| 7 | \( 1 + 3.41iT - 343T^{2} \) |
| 11 | \( 1 + (24.3 + 24.3i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (23.6 - 23.6i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 3.82T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-80.9 + 80.9i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 133. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (55.9 - 55.9i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 87.0T + 2.97e4T^{2} \) |
| 37 | \( 1 + (151. + 151. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 228. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (209. + 209. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 91.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-484. - 484. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (161. + 161. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-546. + 546. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-270. + 270. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 648. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.06e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 85.2T + 4.93e5T^{2} \) |
| 83 | \( 1 + (698. - 698. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.39e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 390.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25808104192250799442167673506, −9.313295125743862249111885448609, −8.429440603668413736242896795996, −7.32545202535930577866279370058, −6.58152814008101966585090129371, −5.54311092473173244179820812234, −4.56364051932642477553061447117, −3.14379626315691653797605791084, −2.22668347087837162520405243757, −0.49395963064582167655701901693,
1.27398967194494536469669019909, 2.49292537151627787524441054207, 3.81354896762265482044053036821, 5.27756162644117819917208395330, 5.52585489464650940866821993877, 7.04120774114485321946082484402, 7.80985342049693170019651947677, 8.777002057880840108174132528984, 9.878694254056242778215995884577, 10.09567091338893852578000653510