L(s) = 1 | + (−14.8 − 14.8i)5-s + 10.4i·7-s + (−23.1 − 23.1i)11-s + (7.26 − 7.26i)13-s − 83.4·17-s + (81.4 − 81.4i)19-s − 86.6i·23-s + 314. i·25-s + (−37.1 + 37.1i)29-s − 251.·31-s + (154. − 154. i)35-s + (−102. − 102. i)37-s + 400. i·41-s + (332. + 332. i)43-s + 192.·47-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.32i)5-s + 0.562i·7-s + (−0.634 − 0.634i)11-s + (0.154 − 0.154i)13-s − 1.19·17-s + (0.983 − 0.983i)19-s − 0.785i·23-s + 2.51i·25-s + (−0.238 + 0.238i)29-s − 1.45·31-s + (0.745 − 0.745i)35-s + (−0.454 − 0.454i)37-s + 1.52i·41-s + (1.18 + 1.18i)43-s + 0.597·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.131 - 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.131 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4046374700\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4046374700\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (14.8 + 14.8i)T + 125iT^{2} \) |
| 7 | \( 1 - 10.4iT - 343T^{2} \) |
| 11 | \( 1 + (23.1 + 23.1i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-7.26 + 7.26i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 83.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-81.4 + 81.4i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 86.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (37.1 - 37.1i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 251.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (102. + 102. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 400. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-332. - 332. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 192.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-88.7 - 88.7i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-528. - 528. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (131. - 131. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (480. - 480. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 391. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 292. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 805.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-232. + 232. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 143. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 733.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82297084558058589499556944537, −9.188727305935811374127346677884, −8.843595256431772110791699353848, −7.981843632382935424460335961203, −7.16619072667783072987134856220, −5.70160852105773187495847516160, −4.88791362986332858256454598034, −4.00188604362537439741870639415, −2.72468387951500410902955523201, −0.932905480454082944371452216686,
0.15215878269698994991594086031, 2.18935901918078664033237283951, 3.52727549574020553234183393942, 4.08275288167732531469315438554, 5.50127469109104233472890808234, 6.90851586552018607339934104290, 7.32297468905281764649496136766, 8.041502803809797147082080880421, 9.300085723909117257978973846687, 10.48441979177339244021192097912