L(s) = 1 | + (2.82 + 1.01i)3-s + (−1.81 − 3.13i)5-s + (−1.59 − 0.920i)7-s + (6.93 + 5.73i)9-s + (−10.0 − 5.80i)11-s + (−6.43 − 11.1i)13-s + (−1.92 − 10.6i)15-s + 12.6·17-s − 25.6i·19-s + (−3.56 − 4.21i)21-s + (25.9 − 14.9i)23-s + (5.93 − 10.2i)25-s + (13.7 + 23.2i)27-s + (10.8 − 18.7i)29-s + (−52.4 + 30.2i)31-s + ⋯ |
L(s) = 1 | + (0.940 + 0.338i)3-s + (−0.362 − 0.627i)5-s + (−0.227 − 0.131i)7-s + (0.770 + 0.637i)9-s + (−0.914 − 0.528i)11-s + (−0.495 − 0.857i)13-s + (−0.128 − 0.713i)15-s + 0.742·17-s − 1.35i·19-s + (−0.169 − 0.200i)21-s + (1.12 − 0.650i)23-s + (0.237 − 0.411i)25-s + (0.509 + 0.860i)27-s + (0.372 − 0.645i)29-s + (−1.69 + 0.975i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.180 + 0.983i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.180 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.856000739\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.856000739\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.82 - 1.01i)T \) |
good | 5 | \( 1 + (1.81 + 3.13i)T + (-12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (1.59 + 0.920i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (10.0 + 5.80i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (6.43 + 11.1i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 12.6T + 289T^{2} \) |
| 19 | \( 1 + 25.6iT - 361T^{2} \) |
| 23 | \( 1 + (-25.9 + 14.9i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-10.8 + 18.7i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (52.4 - 30.2i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 25.7T + 1.36e3T^{2} \) |
| 41 | \( 1 + (33.3 + 57.7i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (14.2 + 8.22i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-66.1 - 38.1i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 14.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + (50.3 - 29.0i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-9.43 + 16.3i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (20.6 - 11.9i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 46.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 49.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + (52.4 + 30.2i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-86.2 - 49.8i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 154.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (21.1 - 36.5i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36926186104901298747485797126, −9.259069275030002674099217768876, −8.614798215643165947207954892796, −7.81057740463671780431598350415, −7.02475205935111610069327279442, −5.38221058343557593328416923078, −4.69618342072790520523775242123, −3.39394029256216867932376974227, −2.55949665659481282136843862279, −0.62596296210864487254388992637,
1.69002325943919251853949972081, 2.90662138518172555255369149993, 3.73528423406373206478794821898, 5.07426335673799829657511115113, 6.41513142703201550938483863374, 7.48829142758165313892244279358, 7.71268826235266666635151282505, 9.036447252398391472616214173520, 9.717316027509657715273205491469, 10.57647901535463316521549298094