| L(s) = 1 | + 7.34·5-s + 10.3·7-s + 8.48·11-s + 10.3i·13-s + 21.2i·17-s − 20i·19-s − 14.6i·23-s + 29·25-s − 36.7·29-s − 51.9·31-s + 76.3·35-s − 41.5i·37-s + 72.1i·41-s − 40i·43-s + 73.4i·47-s + ⋯ |
| L(s) = 1 | + 1.46·5-s + 1.48·7-s + 0.771·11-s + 0.799i·13-s + 1.24i·17-s − 1.05i·19-s − 0.638i·23-s + 1.15·25-s − 1.26·29-s − 1.67·31-s + 2.18·35-s − 1.12i·37-s + 1.75i·41-s − 0.930i·43-s + 1.56i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.169i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(2.813232415\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.813232415\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 7.34T + 25T^{2} \) |
| 7 | \( 1 - 10.3T + 49T^{2} \) |
| 11 | \( 1 - 8.48T + 121T^{2} \) |
| 13 | \( 1 - 10.3iT - 169T^{2} \) |
| 17 | \( 1 - 21.2iT - 289T^{2} \) |
| 19 | \( 1 + 20iT - 361T^{2} \) |
| 23 | \( 1 + 14.6iT - 529T^{2} \) |
| 29 | \( 1 + 36.7T + 841T^{2} \) |
| 31 | \( 1 + 51.9T + 961T^{2} \) |
| 37 | \( 1 + 41.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 72.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 40iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 73.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 36.7T + 2.80e3T^{2} \) |
| 59 | \( 1 - 33.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 3.72e3T^{2} \) |
| 67 | \( 1 + 100iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 73.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 20T + 5.32e3T^{2} \) |
| 79 | \( 1 - 51.9T + 6.24e3T^{2} \) |
| 83 | \( 1 - 127.T + 6.88e3T^{2} \) |
| 89 | \( 1 - 12.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 40T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80481438406846777545955577194, −9.398753633675084238011881596866, −9.062300859214112557545575236602, −7.945859789774530816052976984096, −6.81243709392826518437175002687, −5.92703128175425404296532312870, −5.03677753265853154783556528473, −4.01160025523861825440585401505, −2.14073077571651595316985541677, −1.52526443571982145929774445802,
1.34153729193530267501157441438, 2.20221114911522291502177368815, 3.79945126930549900899753846462, 5.40076311381328977169337680529, 5.45173926517442670438121025900, 6.91735554241775510250042488166, 7.83220797010107284695929962552, 8.874787327543233507376548776740, 9.605993771453313950364421944826, 10.44363377089282108800260440417