L(s) = 1 | + (1.65 − 0.517i)3-s + (−1.94 − 0.521i)5-s + (0.322 − 0.558i)7-s + (2.46 − 1.71i)9-s + (5.59 − 1.49i)11-s + (−1.97 − 0.530i)13-s + (−3.48 + 0.144i)15-s + 3.05i·17-s + (−4.11 − 4.11i)19-s + (0.243 − 1.08i)21-s + (7.05 − 4.07i)23-s + (−0.820 − 0.473i)25-s + (3.18 − 4.10i)27-s + (4.49 − 1.20i)29-s + (−0.147 + 0.0854i)31-s + ⋯ |
L(s) = 1 | + (0.954 − 0.298i)3-s + (−0.869 − 0.233i)5-s + (0.121 − 0.210i)7-s + (0.821 − 0.570i)9-s + (1.68 − 0.451i)11-s + (−0.548 − 0.147i)13-s + (−0.899 + 0.0373i)15-s + 0.741i·17-s + (−0.943 − 0.943i)19-s + (0.0532 − 0.237i)21-s + (1.47 − 0.849i)23-s + (−0.164 − 0.0947i)25-s + (0.613 − 0.789i)27-s + (0.834 − 0.223i)29-s + (−0.0265 + 0.0153i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.590 + 0.807i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.590 + 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.65707 - 0.840995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65707 - 0.840995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.65 + 0.517i)T \) |
good | 5 | \( 1 + (1.94 + 0.521i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.322 + 0.558i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.59 + 1.49i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (1.97 + 0.530i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 - 3.05iT - 17T^{2} \) |
| 19 | \( 1 + (4.11 + 4.11i)T + 19iT^{2} \) |
| 23 | \( 1 + (-7.05 + 4.07i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.49 + 1.20i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (0.147 - 0.0854i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.65 + 2.65i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.983 - 1.70i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.220 - 0.821i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (4.02 - 6.97i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.25 - 3.25i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.135 - 0.506i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (0.805 + 3.00i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (0.583 - 2.17i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 15.3iT - 71T^{2} \) |
| 73 | \( 1 - 9.33iT - 73T^{2} \) |
| 79 | \( 1 + (-9.44 - 5.45i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.31 + 12.3i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + 3.86T + 89T^{2} \) |
| 97 | \( 1 + (7.33 - 12.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64887245883658142820380561927, −9.409249925318538875418402353069, −8.742559097852334141098644656265, −8.103442070215545020858985102516, −7.04262236289563168228169913566, −6.39823396038645756401752004959, −4.54427955880249621176351204308, −3.92989457308224723943434605224, −2.72720783576017339987664257003, −1.09140972907460208129201365564,
1.75444676656493494542736435691, 3.23721476218949756612339241234, 4.03365746742015078947385460113, 4.97642550007983874241016513805, 6.68387247532527555261778714504, 7.31679068598302660091625683265, 8.294509257947272676919102310846, 9.103310677347711927702075439980, 9.757943507146830675289941371265, 10.83195701098779383021110336204