| L(s) = 1 | + (−1.93 − 1.11i)2-s + (1.5 + 2.59i)4-s + (1.93 + 3.35i)5-s + (2.5 − 0.866i)7-s − 2.23i·8-s − 8.66i·10-s + (−1.93 − 1.11i)11-s + (3 − 1.73i)13-s + (−5.80 − 1.11i)14-s + (0.499 − 0.866i)16-s + 5.19i·19-s + (−5.80 + 10.0i)20-s + (2.5 + 4.33i)22-s + (1.93 − 1.11i)23-s + (−5.00 + 8.66i)25-s − 7.74·26-s + ⋯ |
| L(s) = 1 | + (−1.36 − 0.790i)2-s + (0.750 + 1.29i)4-s + (0.866 + 1.50i)5-s + (0.944 − 0.327i)7-s − 0.790i·8-s − 2.73i·10-s + (−0.583 − 0.337i)11-s + (0.832 − 0.480i)13-s + (−1.55 − 0.298i)14-s + (0.124 − 0.216i)16-s + 1.19i·19-s + (−1.29 + 2.25i)20-s + (0.533 + 0.923i)22-s + (0.403 − 0.233i)23-s + (−1.00 + 1.73i)25-s − 1.51·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.158i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.158i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.934263 + 0.0744027i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.934263 + 0.0744027i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2.5 + 0.866i)T \) |
| good | 2 | \( 1 + (1.93 + 1.11i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.93 - 3.35i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.93 + 1.11i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3 + 1.73i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 5.19iT - 19T^{2} \) |
| 23 | \( 1 + (-1.93 + 1.11i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.87 - 2.23i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (-1.93 - 3.35i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.87 + 6.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 8.94iT - 53T^{2} \) |
| 59 | \( 1 + (3.87 + 6.70i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6 + 3.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5 - 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 11.1iT - 71T^{2} \) |
| 73 | \( 1 - 10.3iT - 73T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.87 + 6.70i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 11.6T + 89T^{2} \) |
| 97 | \( 1 + (-12 - 6.92i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54262149584423230733616478096, −10.30249129867471304674916618023, −9.171291429528916097084636610892, −8.181478586777342219156801517357, −7.56600871008272304298893486481, −6.44596277746386511962424158404, −5.38210960989430636847805161569, −3.47323369269430713544560509064, −2.50991023953333009337863163064, −1.40442597066638605488782204109,
0.975915184238140800645085870741, 2.04054001506005170146877753108, 4.52983620796335113849128062076, 5.36808412690314150499155533024, 6.25469127971860898288268069103, 7.44118954379238510665287134487, 8.332936302741483501713077236940, 8.914620056335308285980158389962, 9.390299192777872276559479540684, 10.40794507973768113315661261814