L(s) = 1 | + (−1 − 1.73i)2-s + (−0.999 + 1.73i)4-s − 2·5-s + (0.5 − 2.59i)7-s + (2 + 3.46i)10-s − 2·11-s + (−0.5 − 0.866i)13-s + (−5 + 1.73i)14-s + (1.99 + 3.46i)16-s + (−0.5 + 0.866i)19-s + (1.99 − 3.46i)20-s + (2 + 3.46i)22-s − 25-s + (−0.999 + 1.73i)26-s + (4 + 3.46i)28-s + (−2 + 3.46i)29-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.499 + 0.866i)4-s − 0.894·5-s + (0.188 − 0.981i)7-s + (0.632 + 1.09i)10-s − 0.603·11-s + (−0.138 − 0.240i)13-s + (−1.33 + 0.462i)14-s + (0.499 + 0.866i)16-s + (−0.114 + 0.198i)19-s + (0.447 − 0.774i)20-s + (0.426 + 0.738i)22-s − 0.200·25-s + (−0.196 + 0.339i)26-s + (0.755 + 0.654i)28-s + (−0.371 + 0.643i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.296 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.296 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
good | 2 | \( 1 + (1 + 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 2T + 5T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.5 - 7.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5 - 8.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.5 - 4.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 - 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 + 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5 + 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 + 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (-1.5 - 2.59i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3 - 5.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (8 - 13.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 + 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20154545275267843521912857988, −9.452465025961946570908891691014, −8.267641655680257937101482213602, −7.77381549174498013489541790435, −6.63223917867734229564889109429, −5.06178128445419203738211150598, −3.86954679327999317086999019538, −3.04680140792888561836748124065, −1.48237892803654071173364124564, 0,
2.49011924522786841426748992925, 4.03184772875886666182640647734, 5.39067395617988889123664297475, 6.04693075638489360796595800883, 7.35823673067791072134822941807, 7.71617279529698604206832015639, 8.725951474637966049096781970938, 9.213899975782115287888013654052, 10.37222642487915167172257009170