Properties

Label 2-560-140.83-c2-0-21
Degree $2$
Conductor $560$
Sign $0.143 - 0.989i$
Analytic cond. $15.2588$
Root an. cond. $3.90626$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.71 + 2.71i)3-s + (4.98 − 0.435i)5-s + (5.23 + 4.64i)7-s + 5.72i·9-s + 8.05i·11-s + (−12.1 + 12.1i)13-s + (14.6 + 12.3i)15-s + (−4.68 − 4.68i)17-s + 3.49i·19-s + (1.62 + 26.8i)21-s + (−4.14 + 4.14i)23-s + (24.6 − 4.33i)25-s + (8.87 − 8.87i)27-s − 42.7i·29-s + 7.32·31-s + ⋯
L(s)  = 1  + (0.904 + 0.904i)3-s + (0.996 − 0.0870i)5-s + (0.748 + 0.663i)7-s + 0.636i·9-s + 0.732i·11-s + (−0.932 + 0.932i)13-s + (0.979 + 0.822i)15-s + (−0.275 − 0.275i)17-s + 0.183i·19-s + (0.0772 + 1.27i)21-s + (−0.180 + 0.180i)23-s + (0.984 − 0.173i)25-s + (0.328 − 0.328i)27-s − 1.47i·29-s + 0.236·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.143 - 0.989i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.143 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $0.143 - 0.989i$
Analytic conductor: \(15.2588\)
Root analytic conductor: \(3.90626\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{560} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1),\ 0.143 - 0.989i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.968401040\)
\(L(\frac12)\) \(\approx\) \(2.968401040\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-4.98 + 0.435i)T \)
7 \( 1 + (-5.23 - 4.64i)T \)
good3 \( 1 + (-2.71 - 2.71i)T + 9iT^{2} \)
11 \( 1 - 8.05iT - 121T^{2} \)
13 \( 1 + (12.1 - 12.1i)T - 169iT^{2} \)
17 \( 1 + (4.68 + 4.68i)T + 289iT^{2} \)
19 \( 1 - 3.49iT - 361T^{2} \)
23 \( 1 + (4.14 - 4.14i)T - 529iT^{2} \)
29 \( 1 + 42.7iT - 841T^{2} \)
31 \( 1 - 7.32T + 961T^{2} \)
37 \( 1 + (10.4 - 10.4i)T - 1.36e3iT^{2} \)
41 \( 1 - 51.4iT - 1.68e3T^{2} \)
43 \( 1 + (-37.8 + 37.8i)T - 1.84e3iT^{2} \)
47 \( 1 + (-49.4 + 49.4i)T - 2.20e3iT^{2} \)
53 \( 1 + (49.7 + 49.7i)T + 2.80e3iT^{2} \)
59 \( 1 - 74.7iT - 3.48e3T^{2} \)
61 \( 1 - 43.1iT - 3.72e3T^{2} \)
67 \( 1 + (57.2 + 57.2i)T + 4.48e3iT^{2} \)
71 \( 1 + 45.6iT - 5.04e3T^{2} \)
73 \( 1 + (53.0 - 53.0i)T - 5.32e3iT^{2} \)
79 \( 1 - 96.4T + 6.24e3T^{2} \)
83 \( 1 + (52.7 + 52.7i)T + 6.88e3iT^{2} \)
89 \( 1 + 31.9T + 7.92e3T^{2} \)
97 \( 1 + (-19.5 - 19.5i)T + 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39384956931353925907453121860, −9.686948916218470317636405295312, −9.198413292906491777336460160884, −8.402158050336623866292919554959, −7.28100345092809986815213179808, −6.06032917692947787768312469835, −4.91239698037477805132963869763, −4.27149630466058515399161359010, −2.66304395273099911782728949529, −1.93843681569671879710377665209, 1.08616121495909693904192686974, 2.21333471034886498604836711345, 3.17044560255519037160722160925, 4.78783716277918259374620206090, 5.81774938951265599304111542409, 6.98486500878474786005178251364, 7.66892317794367302504315059738, 8.497681331092093611276044227127, 9.297784625040365375127749899679, 10.48090520201441246493313828086

Graph of the $Z$-function along the critical line