Properties

Label 8-560e4-1.1-c1e4-0-10
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $399.816$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·9-s − 10·25-s + 24·29-s − 4·49-s + 30·81-s + 64·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 80·225-s + ⋯
L(s)  = 1  + 8/3·9-s − 2·25-s + 4.45·29-s − 4/7·49-s + 10/3·81-s + 6.13·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 5.33·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(399.816\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.748578968\)
\(L(\frac12)\) \(\approx\) \(3.748578968\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 116 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69604200085216329688910369519, −7.50043012898668020424595708690, −7.41642984694329464742011246067, −7.08305536119470653045395387305, −6.80624283137444811309504573820, −6.50354176585888331883918880074, −6.45940279819211585448235441510, −6.05453309090106003980353915514, −5.99572966261366046677481883810, −5.70131989134314967577619354362, −5.08022283917042703253124464199, −4.87796898194416701105327363594, −4.66496397812076757902402182635, −4.63387379531427056522861992042, −4.36042514419845706968061955824, −3.87774861442806613281747660106, −3.74947851049353790014571509200, −3.41563597889183892758134941924, −3.09815116358423415539328696436, −2.58650491845040053861014156606, −2.29665644802958783081733835675, −1.98240849387952107145380553813, −1.43369861357658652537926170817, −1.19519006487133455947345797481, −0.67561751341928341798260270317, 0.67561751341928341798260270317, 1.19519006487133455947345797481, 1.43369861357658652537926170817, 1.98240849387952107145380553813, 2.29665644802958783081733835675, 2.58650491845040053861014156606, 3.09815116358423415539328696436, 3.41563597889183892758134941924, 3.74947851049353790014571509200, 3.87774861442806613281747660106, 4.36042514419845706968061955824, 4.63387379531427056522861992042, 4.66496397812076757902402182635, 4.87796898194416701105327363594, 5.08022283917042703253124464199, 5.70131989134314967577619354362, 5.99572966261366046677481883810, 6.05453309090106003980353915514, 6.45940279819211585448235441510, 6.50354176585888331883918880074, 6.80624283137444811309504573820, 7.08305536119470653045395387305, 7.41642984694329464742011246067, 7.50043012898668020424595708690, 7.69604200085216329688910369519

Graph of the $Z$-function along the critical line