L(s) = 1 | + (−1.29 − 0.569i)2-s + (2.95 + 1.70i)3-s + (1.35 + 1.47i)4-s + (2.23 − 0.0580i)5-s + (−2.85 − 3.89i)6-s + (−1.25 − 2.32i)7-s + (−0.909 − 2.67i)8-s + (4.31 + 7.47i)9-s + (−2.92 − 1.19i)10-s + (0.547 + 2.04i)11-s + (1.47 + 6.66i)12-s − 0.966i·13-s + (0.296 + 3.72i)14-s + (6.70 + 3.64i)15-s + (−0.347 + 3.98i)16-s + (−0.932 − 3.47i)17-s + ⋯ |
L(s) = 1 | + (−0.915 − 0.402i)2-s + (1.70 + 0.984i)3-s + (0.675 + 0.737i)4-s + (0.999 − 0.0259i)5-s + (−1.16 − 1.58i)6-s + (−0.473 − 0.880i)7-s + (−0.321 − 0.946i)8-s + (1.43 + 2.49i)9-s + (−0.925 − 0.378i)10-s + (0.164 + 0.615i)11-s + (0.426 + 1.92i)12-s − 0.268i·13-s + (0.0792 + 0.996i)14-s + (1.73 + 0.940i)15-s + (−0.0868 + 0.996i)16-s + (−0.226 − 0.843i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87528 + 0.437683i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87528 + 0.437683i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.29 + 0.569i)T \) |
| 5 | \( 1 + (-2.23 + 0.0580i)T \) |
| 7 | \( 1 + (1.25 + 2.32i)T \) |
good | 3 | \( 1 + (-2.95 - 1.70i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.547 - 2.04i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + 0.966iT - 13T^{2} \) |
| 17 | \( 1 + (0.932 + 3.47i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.0327 - 0.122i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.676 + 2.52i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (1.42 - 1.42i)T - 29iT^{2} \) |
| 31 | \( 1 + (7.08 + 4.09i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.64 - 4.58i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.15T + 41T^{2} \) |
| 43 | \( 1 - 0.958iT - 43T^{2} \) |
| 47 | \( 1 + (4.47 + 1.19i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (2.10 + 1.21i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.86 + 6.94i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-11.3 - 3.02i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-4.87 - 2.81i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.4iT - 71T^{2} \) |
| 73 | \( 1 + (1.00 + 3.76i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (11.6 - 6.70i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.64iT - 83T^{2} \) |
| 89 | \( 1 + (3.01 - 1.74i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.2 + 10.2i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29616145175424228086004223699, −9.806877407920333797637997856229, −9.328118717524149504161136012756, −8.503772764318448482386597766850, −7.54012239352871455860058595831, −6.76661209461178485809887865473, −4.86725818802840049483122057543, −3.72614778937616256455964676368, −2.82276155704098880677169649451, −1.80961311172126753241522915860,
1.53814547656455466281930803457, 2.33076239389046019724182541242, 3.38274118974699010157069397187, 5.67633711200985141228443150696, 6.47920245859038950681140338105, 7.19998541207898014981980817745, 8.337189276371466244951146728774, 8.856942924954796343200757399349, 9.394055278436681818009056836001, 10.18096747266062473112580404149