L(s) = 1 | + (−1.17 + 0.791i)2-s + (0.282 − 1.05i)3-s + (0.746 − 1.85i)4-s + (0.965 − 0.258i)5-s + (0.504 + 1.46i)6-s + (2.60 + 0.486i)7-s + (0.594 + 2.76i)8-s + (1.56 + 0.903i)9-s + (−0.926 + 1.06i)10-s + (−1.45 + 5.42i)11-s + (−1.74 − 1.31i)12-s + (−0.831 + 0.831i)13-s + (−3.43 + 1.48i)14-s − 1.09i·15-s + (−2.88 − 2.76i)16-s + (−2.08 + 1.20i)17-s + ⋯ |
L(s) = 1 | + (−0.828 + 0.559i)2-s + (0.163 − 0.609i)3-s + (0.373 − 0.927i)4-s + (0.431 − 0.115i)5-s + (0.205 + 0.596i)6-s + (0.982 + 0.184i)7-s + (0.210 + 0.977i)8-s + (0.521 + 0.301i)9-s + (−0.293 + 0.337i)10-s + (−0.437 + 1.63i)11-s + (−0.504 − 0.378i)12-s + (−0.230 + 0.230i)13-s + (−0.917 + 0.397i)14-s − 0.282i·15-s + (−0.721 − 0.692i)16-s + (−0.505 + 0.291i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19946 + 0.387635i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19946 + 0.387635i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.17 - 0.791i)T \) |
| 5 | \( 1 + (-0.965 + 0.258i)T \) |
| 7 | \( 1 + (-2.60 - 0.486i)T \) |
good | 3 | \( 1 + (-0.282 + 1.05i)T + (-2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (1.45 - 5.42i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (0.831 - 0.831i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.08 - 1.20i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.60 + 1.23i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.18 - 2.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.13 + 1.13i)T + 29iT^{2} \) |
| 31 | \( 1 + (-4.50 - 7.80i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.616 + 2.30i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 6.99T + 41T^{2} \) |
| 43 | \( 1 + (2.42 + 2.42i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.17 + 8.95i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.43 + 0.652i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-8.66 - 2.32i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.52 + 5.70i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (15.4 + 4.15i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 9.12T + 71T^{2} \) |
| 73 | \( 1 + (3.70 + 6.41i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-13.5 - 7.83i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.287 + 0.287i)T + 83iT^{2} \) |
| 89 | \( 1 + (0.657 - 1.13i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49565610416685973144092741425, −9.952999479618593759958778877584, −8.981885517575689694455272446707, −8.053629125679413744214012833779, −7.31993480291868232430905311108, −6.74836046952484212643161126504, −5.29210032894877284559122241769, −4.69055830716668473555497600231, −2.21612600825763516175174188820, −1.55608236139149647155527750435,
1.06951022249900179449822773962, 2.64789429207705077941708187909, 3.71409875578613219949216287855, 4.88571226647444403974380361308, 6.16699248127418992481882101884, 7.43064335826307051128618473683, 8.234160041112963298125525083521, 9.020900699247266354198086309403, 9.897175736231472513547150673582, 10.56777166492691557249771911331