L(s) = 1 | + (−0.246 − 1.39i)2-s + (−1.41 + 0.379i)3-s + (−1.87 + 0.685i)4-s + (−0.965 − 0.258i)5-s + (0.876 + 1.87i)6-s + (−1.63 − 2.08i)7-s + (1.41 + 2.44i)8-s + (−0.739 + 0.426i)9-s + (−0.122 + 1.40i)10-s + (−0.00275 − 0.0102i)11-s + (2.39 − 1.68i)12-s + (1.75 + 1.75i)13-s + (−2.49 + 2.78i)14-s + 1.46·15-s + (3.06 − 2.57i)16-s + (−0.216 + 0.375i)17-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (−0.816 + 0.218i)3-s + (−0.939 + 0.342i)4-s + (−0.431 − 0.115i)5-s + (0.357 + 0.766i)6-s + (−0.617 − 0.786i)7-s + (0.500 + 0.865i)8-s + (−0.246 + 0.142i)9-s + (−0.0388 + 0.445i)10-s + (−0.000830 − 0.00309i)11-s + (0.692 − 0.485i)12-s + (0.485 + 0.485i)13-s + (−0.667 + 0.744i)14-s + 0.378·15-s + (0.765 − 0.643i)16-s + (−0.0525 + 0.0910i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.138i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.607087 - 0.0421340i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.607087 - 0.0421340i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.246 + 1.39i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 + (1.63 + 2.08i)T \) |
good | 3 | \( 1 + (1.41 - 0.379i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (0.00275 + 0.0102i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-1.75 - 1.75i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.216 - 0.375i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.646 - 2.41i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.50 + 2.02i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.06 - 6.06i)T + 29iT^{2} \) |
| 31 | \( 1 + (1.48 - 2.57i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.70 - 1.79i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 1.88iT - 41T^{2} \) |
| 43 | \( 1 + (-6.27 + 6.27i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.14 - 1.98i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.875 - 3.26i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (1.05 + 3.92i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.50 - 5.62i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (5.29 - 1.42i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 12.3iT - 71T^{2} \) |
| 73 | \( 1 + (-1.20 - 0.696i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (8.04 + 13.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.86 - 1.86i)T + 83iT^{2} \) |
| 89 | \( 1 + (7.02 - 4.05i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 7.20T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72467089255813341447773025404, −10.28259988096457214665620597595, −9.131372885904962265519042025719, −8.342674133391369953323548846569, −7.17728426970788720999561541372, −6.04985192718421759729211202731, −4.83901388774187317176124492843, −4.03358152828869995422876580314, −2.90916600457305495132257175470, −0.999395237683299151215236454670,
0.55545827563958442019891035734, 3.04087552987909278289261801266, 4.47139763947661653758119710185, 5.61961787201173219528923722914, 6.16013445840254072836043143186, 6.99656471585861108710691241627, 8.054338874824933307910990871984, 8.907145782814057352925837651031, 9.690208557466894383745551091409, 10.83864884929119304929882567218