L(s) = 1 | + (2.42 + 1.40i)3-s + (0.792 − 2.09i)5-s + (−0.308 − 2.62i)7-s + (2.43 + 4.22i)9-s + (−3.87 − 2.23i)11-s + 5.47·13-s + (4.85 − 3.96i)15-s + (0.707 − 1.22i)17-s + (3.43 + 5.95i)19-s + (2.93 − 6.81i)21-s + (0.308 + 0.534i)23-s + (−3.74 − 3.31i)25-s + 5.25i·27-s − 3.87·29-s + (−3.43 + 5.95i)31-s + ⋯ |
L(s) = 1 | + (1.40 + 0.809i)3-s + (0.354 − 0.935i)5-s + (−0.116 − 0.993i)7-s + (0.812 + 1.40i)9-s + (−1.16 − 0.674i)11-s + 1.51·13-s + (1.25 − 1.02i)15-s + (0.171 − 0.297i)17-s + (0.788 + 1.36i)19-s + (0.640 − 1.48i)21-s + (0.0643 + 0.111i)23-s + (−0.748 − 0.663i)25-s + 1.01i·27-s − 0.719·29-s + (−0.617 + 1.06i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.118i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.118i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.37203 - 0.141069i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.37203 - 0.141069i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.792 + 2.09i)T \) |
| 7 | \( 1 + (0.308 + 2.62i)T \) |
good | 3 | \( 1 + (-2.42 - 1.40i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (3.87 + 2.23i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.47T + 13T^{2} \) |
| 17 | \( 1 + (-0.707 + 1.22i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.43 - 5.95i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.308 - 0.534i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.87T + 29T^{2} \) |
| 31 | \( 1 + (3.43 - 5.95i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.24 + 2.44i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 10.1iT - 41T^{2} \) |
| 43 | \( 1 + 6.09T + 43T^{2} \) |
| 47 | \( 1 + (2.12 - 1.22i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.12 + 1.22i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.56 - 4.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 + 2.59i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.93 - 6.81i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.96iT - 71T^{2} \) |
| 73 | \( 1 + (-2.12 + 3.67i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.30 - 2.48i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.06iT - 83T^{2} \) |
| 89 | \( 1 + (-10.1 + 5.84i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 7.25T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40781992436148467722217595470, −9.833547127981191587811553545521, −8.953018821344259399734458407960, −8.193666266819300246389824110032, −7.67788668544285510766303433424, −5.98841602412210671006702744473, −4.94316747116385202094050707481, −3.82000749677122069498682848775, −3.16956552475165718407917156125, −1.43685634937237670300723005765,
1.93075888740821404690422435932, 2.69901065831780455172691508008, 3.55882588685681742560079480813, 5.40362418650721744601524110949, 6.43801752565533856008708788611, 7.35196214426530049250584344402, 8.064651922321446518901868259325, 8.979454930824997476351820993003, 9.627399409566763220506706120709, 10.76207536989476270114158066097