L(s) = 1 | + (0.308 − 0.178i)3-s + (2.20 − 0.358i)5-s + (−2.42 − 1.04i)7-s + (−1.43 + 2.48i)9-s + (3.87 − 2.23i)11-s + 5.47·13-s + (0.617 − 0.504i)15-s + (−0.707 − 1.22i)17-s + (−0.436 + 0.756i)19-s + (−0.936 + 0.109i)21-s + (2.42 − 4.20i)23-s + (4.74 − 1.58i)25-s + 2.09i·27-s + 3.87·29-s + (0.436 + 0.756i)31-s + ⋯ |
L(s) = 1 | + (0.178 − 0.102i)3-s + (0.987 − 0.160i)5-s + (−0.918 − 0.395i)7-s + (−0.478 + 0.829i)9-s + (1.16 − 0.674i)11-s + 1.51·13-s + (0.159 − 0.130i)15-s + (−0.171 − 0.297i)17-s + (−0.100 + 0.173i)19-s + (−0.204 + 0.0240i)21-s + (0.506 − 0.877i)23-s + (0.948 − 0.316i)25-s + 0.402i·27-s + 0.719·29-s + (0.0783 + 0.135i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.931 + 0.363i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.931 + 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.74788 - 0.329184i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.74788 - 0.329184i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.20 + 0.358i)T \) |
| 7 | \( 1 + (2.42 + 1.04i)T \) |
good | 3 | \( 1 + (-0.308 + 0.178i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-3.87 + 2.23i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.47T + 13T^{2} \) |
| 17 | \( 1 + (0.707 + 1.22i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.436 - 0.756i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.42 + 4.20i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3.87T + 29T^{2} \) |
| 31 | \( 1 + (-0.436 - 0.756i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.24 + 2.44i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.24iT - 41T^{2} \) |
| 43 | \( 1 + 10.3T + 43T^{2} \) |
| 47 | \( 1 + (-2.12 - 1.22i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.12 + 1.22i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.43 + 11.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 - 2.59i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.67 - 11.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.43iT - 71T^{2} \) |
| 73 | \( 1 + (2.12 + 3.67i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.30 - 4.22i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.41iT - 83T^{2} \) |
| 89 | \( 1 + (13.1 + 7.57i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 18.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68750343719259298957561991256, −9.827297199078349572676526922159, −8.837482502420013970718790410050, −8.400795507473842886868745682415, −6.75340256403522884105522117476, −6.31444475142759933878488993449, −5.27857098372760524023419688648, −3.86758478644049725630098141715, −2.78339595743774670812825476485, −1.25081004390823650551627986673,
1.49291509214344025419697770647, 3.02832195546412828516962241982, 3.89907903691284806897764195163, 5.49489480923190633545718814418, 6.42407757734223201292443419422, 6.74568462886707315375260255122, 8.552644336270666256282699563637, 9.149071480249648106081410197932, 9.726002787650305164637111836575, 10.69761025588715522502451796584