| L(s) = 1 | + (−0.866 − 0.5i)3-s + (1.23 − 1.86i)5-s + (2.59 − 0.5i)7-s + (−1 − 1.73i)9-s + 2i·13-s + (−2 + i)15-s + (1.73 + i)17-s + (−3 − 5.19i)19-s + (−2.5 − 0.866i)21-s + (2.59 − 1.5i)23-s + (−1.96 − 4.59i)25-s + 5i·27-s − 7·29-s + (1 − 1.73i)31-s + (2.26 − 5.46i)35-s + ⋯ |
| L(s) = 1 | + (−0.499 − 0.288i)3-s + (0.550 − 0.834i)5-s + (0.981 − 0.188i)7-s + (−0.333 − 0.577i)9-s + 0.554i·13-s + (−0.516 + 0.258i)15-s + (0.420 + 0.242i)17-s + (−0.688 − 1.19i)19-s + (−0.545 − 0.188i)21-s + (0.541 − 0.312i)23-s + (−0.392 − 0.919i)25-s + 0.962i·27-s − 1.29·29-s + (0.179 − 0.311i)31-s + (0.383 − 0.923i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0667 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0667 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.994604 - 0.930290i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.994604 - 0.930290i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.23 + 1.86i)T \) |
| 7 | \( 1 + (-2.59 + 0.5i)T \) |
| good | 3 | \( 1 + (0.866 + 0.5i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.59 + 1.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 7T + 29T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.92 + 4i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 5T + 41T^{2} \) |
| 43 | \( 1 + 7iT - 43T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.19 + 3i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.33 - 2.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (-5.19 - 3i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82804529835135974577123406339, −9.448185683549814725405565512482, −8.925012891883552730725839860352, −7.928448139993282566575233090802, −6.83731878884823410885052450475, −5.86909949795574037915749215860, −5.03963364170359558855640154414, −4.06890747941186393082438546212, −2.20686811108613444080958468964, −0.874759360086058280991463306878,
1.80922712379544592004348110989, 3.06813631202623581915344058520, 4.54803717468686975984234749137, 5.55278886784191293285632100768, 6.13900524552533842836611194216, 7.54718744272437751376642718751, 8.125951116508358189415755353184, 9.412628450970435303537711606164, 10.29760363115353598211475544089, 10.99980264848198017034405918892