L(s) = 1 | + (1.32 − 2.30i)3-s + (0.866 − 0.5i)5-s + (1.45 − 2.21i)7-s + (−2.03 − 3.52i)9-s + (4.36 + 2.51i)11-s + 3.01i·13-s − 2.65i·15-s + (−1.94 − 1.12i)17-s + (−1.03 − 1.79i)19-s + (−3.16 − 6.28i)21-s + (0.724 − 0.418i)23-s + (0.499 − 0.866i)25-s − 2.84·27-s − 8.81·29-s + (−5.36 + 9.29i)31-s + ⋯ |
L(s) = 1 | + (0.767 − 1.32i)3-s + (0.387 − 0.223i)5-s + (0.548 − 0.835i)7-s + (−0.678 − 1.17i)9-s + (1.31 + 0.759i)11-s + 0.835i·13-s − 0.686i·15-s + (−0.471 − 0.272i)17-s + (−0.237 − 0.410i)19-s + (−0.689 − 1.37i)21-s + (0.151 − 0.0872i)23-s + (0.0999 − 0.173i)25-s − 0.546·27-s − 1.63·29-s + (−0.963 + 1.66i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0691 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0691 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.55813 - 1.45388i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55813 - 1.45388i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-1.45 + 2.21i)T \) |
good | 3 | \( 1 + (-1.32 + 2.30i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-4.36 - 2.51i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.01iT - 13T^{2} \) |
| 17 | \( 1 + (1.94 + 1.12i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.03 + 1.79i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.724 + 0.418i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 8.81T + 29T^{2} \) |
| 31 | \( 1 + (5.36 - 9.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.14 + 1.97i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.10iT - 41T^{2} \) |
| 43 | \( 1 + 7.14iT - 43T^{2} \) |
| 47 | \( 1 + (-5.30 - 9.17i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.263 + 0.456i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.57 + 4.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (10.9 - 6.33i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.17 + 1.83i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.22iT - 71T^{2} \) |
| 73 | \( 1 + (-7.28 - 4.20i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.91 + 3.41i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.66T + 83T^{2} \) |
| 89 | \( 1 + (-6.78 + 3.91i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 17.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63816121674103963959156376392, −9.185748641826037735625312515397, −8.974678459943837441132732306067, −7.64241334550277545574808526538, −7.06835070585966863996978546673, −6.41700421046222648625321148036, −4.81556416748181160803249878434, −3.72771894225646032622634434287, −2.07292382202667991703623946362, −1.36020295002089131280266502116,
2.06782189987973239498531073278, 3.35439503196192572744404618632, 4.13042811498379256267851970970, 5.39433318469734798870510913497, 6.12679810394966373420796003180, 7.68465496791226667266734017039, 8.730567200301933558247702283080, 9.120238001324018581453533233552, 9.937889730539126638498899144074, 10.93272383084364045832203304386