L(s) = 1 | + (−1.60 + 2.78i)3-s + (0.866 − 0.5i)5-s + (−0.279 − 2.63i)7-s + (−3.68 − 6.37i)9-s + (1.40 + 0.808i)11-s − 5.32i·13-s + 3.21i·15-s + (−4.03 − 2.33i)17-s + (−2.68 − 4.64i)19-s + (7.78 + 3.45i)21-s + (−5.13 + 2.96i)23-s + (0.499 − 0.866i)25-s + 14.0·27-s + 8.25·29-s + (2.66 − 4.61i)31-s + ⋯ |
L(s) = 1 | + (−0.929 + 1.60i)3-s + (0.387 − 0.223i)5-s + (−0.105 − 0.994i)7-s + (−1.22 − 2.12i)9-s + (0.422 + 0.243i)11-s − 1.47i·13-s + 0.831i·15-s + (−0.978 − 0.565i)17-s + (−0.615 − 1.06i)19-s + (1.69 + 0.754i)21-s + (−1.07 + 0.617i)23-s + (0.0999 − 0.173i)25-s + 2.70·27-s + 1.53·29-s + (0.478 − 0.829i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.706424 - 0.304756i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.706424 - 0.304756i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.279 + 2.63i)T \) |
good | 3 | \( 1 + (1.60 - 2.78i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-1.40 - 0.808i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.32iT - 13T^{2} \) |
| 17 | \( 1 + (4.03 + 2.33i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.68 + 4.64i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.13 - 2.96i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.25T + 29T^{2} \) |
| 31 | \( 1 + (-2.66 + 4.61i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.02 - 5.24i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.35iT - 41T^{2} \) |
| 43 | \( 1 - 3.04iT - 43T^{2} \) |
| 47 | \( 1 + (1.08 + 1.87i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.69 - 4.67i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.72 + 6.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.549 - 0.317i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.3 + 7.12i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.61iT - 71T^{2} \) |
| 73 | \( 1 + (-0.645 - 0.372i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.535 - 0.309i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.11T + 83T^{2} \) |
| 89 | \( 1 + (1.96 - 1.13i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 4.11iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54532415842549222890241174020, −9.948558357125092891762179005133, −9.291611788900084301084751455354, −8.162091862047151238299772220075, −6.70953180844589592761161774407, −5.92504900200778031460809553368, −4.78106973717461520208871069460, −4.31823950427103511525597156320, −3.05431840577983199959347028207, −0.49245910845772014012825548419,
1.63682461530733884610398423494, 2.41273680931775444272825133660, 4.46194346457346291973464988585, 5.85514837108622630694577546046, 6.33170677271497401241688967022, 6.89990708935298366815382954615, 8.241311719627781573553951398518, 8.814539653342923445810035444741, 10.19845538958748024511568234476, 11.17209915541364366516144709848