L(s) = 1 | + (0.821 + 1.42i)3-s + (−0.866 − 0.5i)5-s + (1.59 − 2.10i)7-s + (0.149 − 0.259i)9-s + (3.12 − 1.80i)11-s + 6.16i·13-s − 1.64i·15-s + (3.07 − 1.77i)17-s + (1.14 − 1.99i)19-s + (4.31 + 0.539i)21-s + (−4.75 − 2.74i)23-s + (0.499 + 0.866i)25-s + 5.42·27-s + 3.52·29-s + (2.33 + 4.04i)31-s + ⋯ |
L(s) = 1 | + (0.474 + 0.821i)3-s + (−0.387 − 0.223i)5-s + (0.603 − 0.797i)7-s + (0.0499 − 0.0864i)9-s + (0.941 − 0.543i)11-s + 1.70i·13-s − 0.424i·15-s + (0.745 − 0.430i)17-s + (0.263 − 0.456i)19-s + (0.941 + 0.117i)21-s + (−0.991 − 0.572i)23-s + (0.0999 + 0.173i)25-s + 1.04·27-s + 0.655·29-s + (0.419 + 0.725i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80394 + 0.247342i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80394 + 0.247342i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-1.59 + 2.10i)T \) |
good | 3 | \( 1 + (-0.821 - 1.42i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-3.12 + 1.80i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6.16iT - 13T^{2} \) |
| 17 | \( 1 + (-3.07 + 1.77i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.14 + 1.99i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.75 + 2.74i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.52T + 29T^{2} \) |
| 31 | \( 1 + (-2.33 - 4.04i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.44 - 7.70i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.04iT - 41T^{2} \) |
| 43 | \( 1 + 6.61iT - 43T^{2} \) |
| 47 | \( 1 + (-0.614 + 1.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.22 - 7.31i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.91 - 3.32i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (10.6 + 6.15i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.95 - 4.59i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14.0iT - 71T^{2} \) |
| 73 | \( 1 + (6.30 - 3.63i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.73 + 2.15i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.3T + 83T^{2} \) |
| 89 | \( 1 + (13.3 + 7.69i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.17iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68147787407504202433787025923, −9.874752813478925807622249061301, −9.017318494936328110437028119587, −8.410377465995568867032934009468, −7.20900737112386483345234983362, −6.39659669307857029321057471332, −4.71464619909598866585574932967, −4.22386782920550930178385219821, −3.25985634099305432985304590951, −1.32531883068709721480998881047,
1.43525304341408430340884694717, 2.62694972534347894566073290309, 3.86874588863043863361316122501, 5.27551908702780037081832961805, 6.18360759977487294790773561449, 7.49278109123466372926366526298, 7.898671129373055290751404119124, 8.684158520084294122736870364900, 9.882026574315967705417397547482, 10.69989059150996576204874269637