Properties

Label 2-56-7.6-c6-0-0
Degree $2$
Conductor $56$
Sign $-0.617 - 0.786i$
Analytic cond. $12.8830$
Root an. cond. $3.58929$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.1i·3-s + 135. i·5-s + (−211. − 269. i)7-s + 144.·9-s − 2.46e3·11-s + 940. i·13-s + 3.26e3·15-s + 6.74e3i·17-s + 8.84e3i·19-s + (−6.51e3 + 5.12e3i)21-s − 1.14e4·23-s − 2.64e3·25-s − 2.11e4i·27-s − 4.02e4·29-s + 2.69e4i·31-s + ⋯
L(s)  = 1  − 0.895i·3-s + 1.08i·5-s + (−0.617 − 0.786i)7-s + 0.198·9-s − 1.85·11-s + 0.428i·13-s + 0.967·15-s + 1.37i·17-s + 1.28i·19-s + (−0.703 + 0.552i)21-s − 0.937·23-s − 0.169·25-s − 1.07i·27-s − 1.64·29-s + 0.904i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.617 - 0.786i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $-0.617 - 0.786i$
Analytic conductor: \(12.8830\)
Root analytic conductor: \(3.58929\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{56} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :3),\ -0.617 - 0.786i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.184128 + 0.378801i\)
\(L(\frac12)\) \(\approx\) \(0.184128 + 0.378801i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (211. + 269. i)T \)
good3 \( 1 + 24.1iT - 729T^{2} \)
5 \( 1 - 135. iT - 1.56e4T^{2} \)
11 \( 1 + 2.46e3T + 1.77e6T^{2} \)
13 \( 1 - 940. iT - 4.82e6T^{2} \)
17 \( 1 - 6.74e3iT - 2.41e7T^{2} \)
19 \( 1 - 8.84e3iT - 4.70e7T^{2} \)
23 \( 1 + 1.14e4T + 1.48e8T^{2} \)
29 \( 1 + 4.02e4T + 5.94e8T^{2} \)
31 \( 1 - 2.69e4iT - 8.87e8T^{2} \)
37 \( 1 - 9.85e3T + 2.56e9T^{2} \)
41 \( 1 + 7.69e4iT - 4.75e9T^{2} \)
43 \( 1 - 4.52e4T + 6.32e9T^{2} \)
47 \( 1 + 1.50e5iT - 1.07e10T^{2} \)
53 \( 1 + 9.83e4T + 2.21e10T^{2} \)
59 \( 1 - 1.03e5iT - 4.21e10T^{2} \)
61 \( 1 + 1.69e5iT - 5.15e10T^{2} \)
67 \( 1 + 1.49e4T + 9.04e10T^{2} \)
71 \( 1 + 2.55e5T + 1.28e11T^{2} \)
73 \( 1 + 2.87e5iT - 1.51e11T^{2} \)
79 \( 1 - 1.59e5T + 2.43e11T^{2} \)
83 \( 1 - 6.58e5iT - 3.26e11T^{2} \)
89 \( 1 + 5.44e5iT - 4.96e11T^{2} \)
97 \( 1 + 1.57e5iT - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.21705894956675792025638082636, −13.22278659359432639115729307364, −12.44658493606234074005072638830, −10.69244377255490469763293544775, −10.15682544260737304790664152507, −7.950591509818229616718385185101, −7.15645188081665427340324119676, −5.98797706020686848883191556368, −3.67008005272283436401194081551, −1.99710381791799602061906498075, 0.16706132972100567389508383177, 2.75082574749793098940488774938, 4.68098831193867947287270337322, 5.53773767177536499915845067943, 7.68884477307616505947171697535, 9.122575247095264286027144370465, 9.835663521797830590786487749849, 11.20832427391877666202612047701, 12.73088332428298021855184785666, 13.26821078956794880947207801120

Graph of the $Z$-function along the critical line