| L(s) = 1 | + (−4.25 + 7.37i)3-s + (−4.23 − 7.34i)5-s + (−17.7 − 5.36i)7-s + (−22.7 − 39.3i)9-s + (−12.5 + 21.6i)11-s − 21.5·13-s + 72.1·15-s + (−50.8 + 88.0i)17-s + (72.9 + 126. i)19-s + (114. − 107. i)21-s + (−88.9 − 154. i)23-s + (26.5 − 46.0i)25-s + 157.·27-s + 89.5·29-s + (−105. + 183. i)31-s + ⋯ |
| L(s) = 1 | + (−0.819 + 1.41i)3-s + (−0.379 − 0.656i)5-s + (−0.957 − 0.289i)7-s + (−0.841 − 1.45i)9-s + (−0.342 + 0.593i)11-s − 0.460·13-s + 1.24·15-s + (−0.725 + 1.25i)17-s + (0.881 + 1.52i)19-s + (1.19 − 1.12i)21-s + (−0.806 − 1.39i)23-s + (0.212 − 0.368i)25-s + 1.11·27-s + 0.573·29-s + (−0.613 + 1.06i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 + 0.165i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.986 + 0.165i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.0251665 - 0.301509i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0251665 - 0.301509i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (17.7 + 5.36i)T \) |
| good | 3 | \( 1 + (4.25 - 7.37i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (4.23 + 7.34i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (12.5 - 21.6i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 21.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (50.8 - 88.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-72.9 - 126. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (88.9 + 154. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 89.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (105. - 183. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-136. - 235. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 50.4T + 6.89e4T^{2} \) |
| 43 | \( 1 + 332.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (156. + 271. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-52.7 + 91.4i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-232. + 402. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-16.4 - 28.4i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-27.8 + 48.3i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 19.6T + 3.57e5T^{2} \) |
| 73 | \( 1 + (83.5 - 144. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-269. - 466. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 597.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (579. + 1.00e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 755.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.68912081687268508495627099958, −14.57183671649479958623420437302, −12.76723389564385256410748348062, −11.95568112635381279757685576007, −10.36523575739361282912462443929, −9.949500572485253416732943072941, −8.424135882635389639593586364505, −6.38502109874355050343796155287, −4.92438563170199434697571499939, −3.81688973236217745125067470862,
0.22960014033445751798513831365, 2.78354873403312429436899038300, 5.53898666112228370249734092235, 6.81809555074545914571052033717, 7.51871743504107657085953621398, 9.422539146223789423465330733638, 11.20982229448801632231001918647, 11.77253421346766496727629253951, 13.09353555289823136920684575072, 13.70984667809903523179843932461