Properties

Label 2-56-1.1-c3-0-2
Degree $2$
Conductor $56$
Sign $1$
Analytic cond. $3.30410$
Root an. cond. $1.81772$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.54·3-s + 3.45·5-s + 7·7-s + 15.9·9-s − 27.2·11-s + 58.7·13-s + 22.5·15-s + 49.2·17-s − 157.·19-s + 45.8·21-s − 82.1·23-s − 113.·25-s − 72.7·27-s − 194.·29-s + 115.·31-s − 178.·33-s + 24.1·35-s + 327.·37-s + 384.·39-s − 136.·41-s + 311.·43-s + 54.8·45-s − 355.·47-s + 49·49-s + 322.·51-s + 677.·53-s − 94.1·55-s + ⋯
L(s)  = 1  + 1.26·3-s + 0.308·5-s + 0.377·7-s + 0.588·9-s − 0.748·11-s + 1.25·13-s + 0.388·15-s + 0.703·17-s − 1.89·19-s + 0.476·21-s − 0.745·23-s − 0.904·25-s − 0.518·27-s − 1.24·29-s + 0.670·31-s − 0.943·33-s + 0.116·35-s + 1.45·37-s + 1.57·39-s − 0.518·41-s + 1.10·43-s + 0.181·45-s − 1.10·47-s + 0.142·49-s + 0.886·51-s + 1.75·53-s − 0.230·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(3.30410\)
Root analytic conductor: \(1.81772\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.030054357\)
\(L(\frac12)\) \(\approx\) \(2.030054357\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 7T \)
good3 \( 1 - 6.54T + 27T^{2} \)
5 \( 1 - 3.45T + 125T^{2} \)
11 \( 1 + 27.2T + 1.33e3T^{2} \)
13 \( 1 - 58.7T + 2.19e3T^{2} \)
17 \( 1 - 49.2T + 4.91e3T^{2} \)
19 \( 1 + 157.T + 6.85e3T^{2} \)
23 \( 1 + 82.1T + 1.21e4T^{2} \)
29 \( 1 + 194.T + 2.43e4T^{2} \)
31 \( 1 - 115.T + 2.97e4T^{2} \)
37 \( 1 - 327.T + 5.06e4T^{2} \)
41 \( 1 + 136.T + 6.89e4T^{2} \)
43 \( 1 - 311.T + 7.95e4T^{2} \)
47 \( 1 + 355.T + 1.03e5T^{2} \)
53 \( 1 - 677.T + 1.48e5T^{2} \)
59 \( 1 + 197.T + 2.05e5T^{2} \)
61 \( 1 - 61.0T + 2.26e5T^{2} \)
67 \( 1 - 1.01e3T + 3.00e5T^{2} \)
71 \( 1 + 279.T + 3.57e5T^{2} \)
73 \( 1 - 629.T + 3.89e5T^{2} \)
79 \( 1 - 20.2T + 4.93e5T^{2} \)
83 \( 1 + 260.T + 5.71e5T^{2} \)
89 \( 1 + 909.T + 7.04e5T^{2} \)
97 \( 1 - 100.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69208682957622607215456088584, −13.70183136702895011565083919075, −12.90599081637783112485134113995, −11.18771815661628809501836736454, −9.918805086527631263020978388908, −8.599699858461191113376582736515, −7.86705961569865380978701039721, −5.95090519735177069393186873214, −3.90000700922733022620747990971, −2.19091360647940084488316623269, 2.19091360647940084488316623269, 3.90000700922733022620747990971, 5.95090519735177069393186873214, 7.86705961569865380978701039721, 8.599699858461191113376582736515, 9.918805086527631263020978388908, 11.18771815661628809501836736454, 12.90599081637783112485134113995, 13.70183136702895011565083919075, 14.69208682957622607215456088584

Graph of the $Z$-function along the critical line