L(s) = 1 | + (0.866 − 0.5i)2-s + (−1.37 + 1.05i)3-s + (0.499 − 0.866i)4-s + (1.74 + 1.00i)5-s + (−0.665 + 1.59i)6-s + (−1.62 − 2.80i)7-s − 0.999i·8-s + (0.787 − 2.89i)9-s + 2.01·10-s + (−2.86 − 4.95i)11-s + (0.222 + 1.71i)12-s + (2.00 + 1.15i)13-s + (−2.80 − 1.62i)14-s + (−3.46 + 0.449i)15-s + (−0.5 − 0.866i)16-s + 4.78·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.794 + 0.607i)3-s + (0.249 − 0.433i)4-s + (0.782 + 0.451i)5-s + (−0.271 + 0.652i)6-s + (−0.612 − 1.06i)7-s − 0.353i·8-s + (0.262 − 0.964i)9-s + 0.638·10-s + (−0.862 − 1.49i)11-s + (0.0643 + 0.495i)12-s + (0.556 + 0.321i)13-s + (−0.750 − 0.433i)14-s + (−0.895 + 0.116i)15-s + (−0.125 − 0.216i)16-s + 1.15·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.497 + 0.867i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.497 + 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42074 - 0.823528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42074 - 0.823528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (1.37 - 1.05i)T \) |
| 31 | \( 1 + (2.35 - 5.04i)T \) |
good | 5 | \( 1 + (-1.74 - 1.00i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.62 + 2.80i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.86 + 4.95i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.00 - 1.15i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.78T + 17T^{2} \) |
| 19 | \( 1 - 5.23T + 19T^{2} \) |
| 23 | \( 1 + (-0.788 + 1.36i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.991 + 1.71i)T + (-14.5 + 25.1i)T^{2} \) |
| 37 | \( 1 + 3.80iT - 37T^{2} \) |
| 41 | \( 1 + (-6.80 - 3.92i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.65 + 2.11i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.49 - 0.862i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 12.6T + 53T^{2} \) |
| 59 | \( 1 + (12.7 + 7.34i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.68 + 2.70i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.23 + 3.87i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.99iT - 71T^{2} \) |
| 73 | \( 1 - 3.40iT - 73T^{2} \) |
| 79 | \( 1 + (-8.21 + 4.74i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.74 - 11.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 12.4T + 89T^{2} \) |
| 97 | \( 1 + (-7.16 - 12.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82684962136048186873242160808, −10.00666872987425297363720873794, −9.366002027043183637736158651664, −7.76768562381341695869769671215, −6.55385544412013229730028631505, −5.90553826683184032465563103491, −5.13958375005436166912919679376, −3.73466086524673057916063624003, −3.08324270226030852660593643676, −0.911462921358602764698363263136,
1.71493058292788762173314672645, 2.95771427296444004464436619472, 4.78118696140062751633164728021, 5.63515934614337089053011566898, 5.92094609532909297198495467795, 7.25376786838439853012967139653, 7.87296456539551709416473812101, 9.327255316669810648394185768331, 9.946000856880508053987824864432, 11.11870811303880570709199870779